

# Drainage and Wastewater Management Plan **Exe** May 2023



# Table of Contents

| Overview                           | 4   |
|------------------------------------|-----|
| Current Performance                | 10  |
| Environmental Performance          |     |
| Future challenges in the catchment | 26  |
| Catchment Strategy                 |     |
| Medium and Long-Term Plans         |     |
| APPENDICES                         | 114 |

#### Status and update information

#### Version SWW\_DWMP\_2021/22\_0\_2023-05-31

This document provides asset, characteristic and performance data for Strategic Planning Areas (Level 2 catchments). Performance data for the time frame up to April 2023 has been utilised to populate these documents.

#### **Production Statement**

These documents are produced using an automated process. The process uses a mixture of standard data holdings such as records of assets within the Exe catchment and documents that are produced as part of modelling and analysis undertaken as part of the DWMP. The decision has been made to leave in tables and figures even if no performance or asset data exists for the catchment to serve as confirmation that no records are held for that particular item.

#### **Data Statement**

This document contains asset, characteristic and performance data for Strategic Planning Areas (Level 2 catchments) and has been prepared by South West Water Limited for the purposes of providing area specific detail on assets, risks and proposed interventions for our drainage and wastewater plans. Data records shown in the document for various performance and other metrics may not completely align with Regulatory reported data. This is partly due to the catchment based summation of some data and minor differences in time frames over which DWMP data has been collated compared to the Regulatory reporting time frames.

#### **Contact details**

If you have any queries or questions, you can email <u>dwmp@southwestwater.co.uk</u>.

South West Water, Peninsula House, Rydon Lane, Exeter, EX2 7HR

#### **Overview**

#### **Area Details**

The Exe catchment sits within the administrative districts of East Devon District, Exeter District (b), Mid Devon District, North Devon District, Somerset West and Taunton District, Teignbridge District and West Devon District (b). It covers the main settlements of Exeter, Exmouth, Tiverton, Dawlish, Crediton, Cullompton, Budleigh Salterton, Topsham, Willand, Cranbrook, Clyst Honiton, Dunkeswell, Woodbury, Thorverton, Exminster, Lympstone, Dunchideock, Bampton, Dawlish Warren, Whimple, Exton, Uffculme, Tedburn St Mary, Broadclyst, West Clyst, Dulverton, Halberton, Bradninch, Kenton and Hemyock.

The population of the Exe catchment in 2020 was 283,627 and is projected to grow to 373,332 by 2050, an increase of 31.6 %. The catchment is also impacted by the influx of tourists during the summer, with an increase of 37,252 or 13.1 % over the existing resident population.

The Exe catchment contains 176 km of watercourses including 114 km of Main River as designated by the Environment Agency (EA). This includes the Alphin Brook, Alsa Brook, Berry Brook, Brockey River, Brown's Brook, Burn River, Cole Brook, Cottey Brook, Dawlish Water, Duryardwood Brook, Exeter Canal, Exwick Leat, Fordland Brook, Grindie Brook, Grindle Brook, Heal-eye Stream, Holly Water, Jackmoor Brook, Lilly Brook, Littleham Brook, Marsh Water, Matford Brook, Mill Stream, Mincinglake Stream, Nadder Brook, Northbrook, Pin Brook, Pulham River, River Barle, River Batherm, River Clyst, River Creedy, River Culm, River Culvery, River Exe, River Haddeo, River Ken, River Kenn, River Lowman, River Lyner, River Otter, River Troney, River Weaver, River Yeo, Shobrooke Lake, Shuttern Brook, Spratford Stream, Taddiforde Brook, Three Waters, Town Leat, Withycombe Brook and Wotton Brook.

Discharges in the Exe catchment may impact on the bathing waters of Budleigh Salterton Beach, Coryton Cove Dawlish, Dawlish (Town) Beach, Exmouth Beach, Sandy Bay Beach and Teignmouth (Holcombe) Beach and the shellfish waters of Exe.

Details about local geology and soil structure can be found on the <u>British Geological Survey</u> website.

#### **Wastewater Network**

The Exe catchment area has approximately 2035km of mapped sewers and 62 sewage pumping stations (SPS) to convey wastewater away from homes and businesses to 78 Sewage Treatment Works. It has both separate (foul or surface water) and combined (foul and surface water) networks.

During severe rainfall events, where sewers convey foul and storm water, sewer capacity can be exceeded and to prevent flooding of homes and businesses, storm overflows act as built-in pressure relief valves and allow flows above a certain level to be discharged to rivers and seas. Storm overflows are permitted by the EA.

There are 236 overflows of which 21 are emergency overflows in the Exe catchment (which should only operate as a result of other asset failure or power loss). There are 236 Event Duration Monitors (EDM's) installed to monitor spill frequency and spill duration.

A summary of the mapped wastewater network lengths is included in Table 1 below:

| Sewer Type | Length<br>(km) |
|------------|----------------|
| Combined   | 893.2          |
| Surface    | 649.4          |
| Foul       | 492.8          |

 Table 1: Wastewater network lengths by system type

#### **Area Overview**

Table 2 summarises the number of critical assets within the Exe catchment and a count of intersections with shellfisheries and bathing waters. The Level 3 (treatment works) catchments and neighbouring areas are shown in Figure 1.

| Shellfisheries | Bathing<br>Waters | SPS | Storm<br>Overflows | Emergency<br>Overflows | Monitored<br>Storm<br>Overflows |
|----------------|-------------------|-----|--------------------|------------------------|---------------------------------|
| 1              | 6                 | 62  | 215                | 21                     | 236                             |

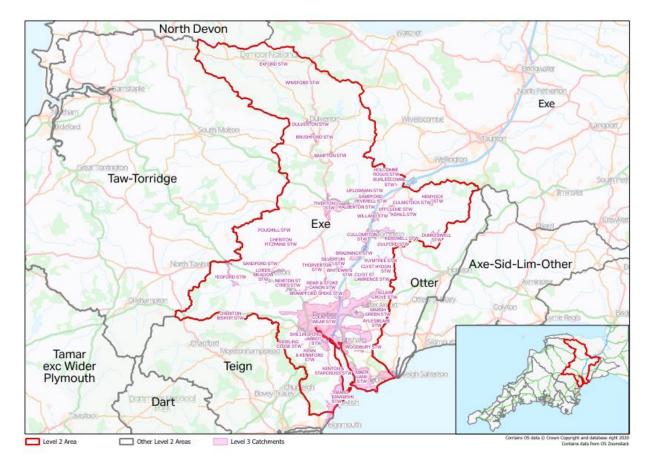



Figure 1: Catchment Overview

#### **Designated Areas**

#### Special Areas of Conservation

Special Areas of Conservation (SACs) are protected areas in the UK designated under:

- the Conservation of Habitats and Species Regulations 2017 (as amended) in England and Wales (including the adjacent territorial sea) and to a limited extent in Scotland (reserved matters) and Northern Ireland (excepted matters)
- the Conservation of Offshore Marine Habitats and Species Regulations 2017 (as amended) in the UK offshore area.

Under these regulations, the UK Government and devolved administrations are required to establish a network of important high-quality conservation sites that will make a significant contribution to conserving the habitats and species identified in Annexes I and II, respectively, of European Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna and flora, known as the Habitats Directive.

#### Special Areas of Scientific Interest

Under the Wildlife and Countryside Act 1981 (amended 1985) government has a duty to notify as a Site of Special Scientific Interest (SSSI) any land which in its opinion is of special interest by reason of any of its flora, fauna, geological or physiographical features.

SSSIs are designated by Natural England. An SSSI is not necessarily owned by a conservation organisation or by the Government - in fact, they can be owned by anybody. The designation is primarily to identify those areas worthy of preservation. A SSSI is given certain protection against damaging operations, and any such operations must be authorised by the designating body. The status also affords a certain amount of planning protection, depending on the reasons for designation.

#### Marine Conservation Zones

A Marine Conservation Zone (MCZ) is a type of marine nature reserve in UK waters. They were established under the Marine and Coastal Access Act (2009) and are areas designated with the aim to protect nationally important, rare or threatened habitats and species.

If any of these designated areas are within the Exe catchment they are shown in Figure 2 below.

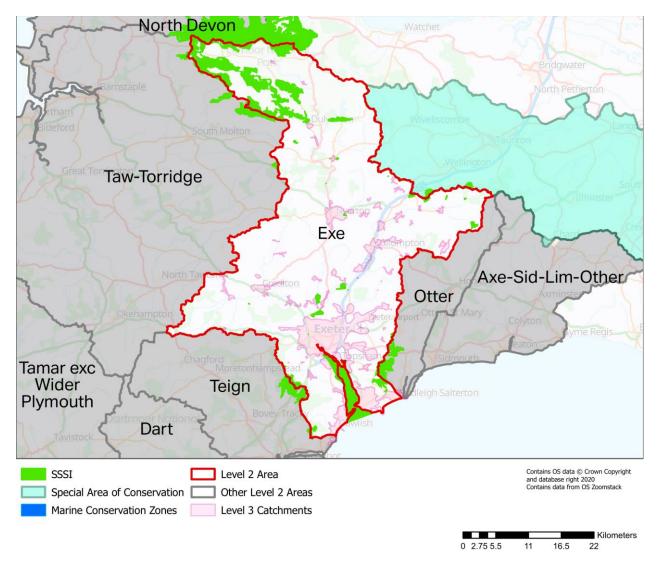



Figure 2: Designated Areas

#### **Flooding Responsibilities**

The Flood and Water Management Act, 2010 (FWMA), identified new responsibilities for flood and coastal erosion risk management authorities, of which Water and Sewerage Companies are one, together with a duty on all relevant authorities involved to co-operate and share data.

| Location Description         |                                                                   | Responsibility                                                 |  |
|------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|--|
|                              | Landowners are responsible for their                              | Lead Local Flood Authorities                                   |  |
| Surface runoff/Land drainage | land drainage and must not cause problems for neighbours          | Landowners                                                     |  |
|                              | Highways Surface water on roads,                                  | Highways Authorities                                           |  |
| Highways                     | highways and pavements, blocked road drains/gullies and overgrown | <ul> <li>Highways England/Welsh</li> <li>Government</li> </ul> |  |

| Location                | Description                                                                 | Responsibility                                                           |  |
|-------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--|
|                         | verges                                                                      | • Transport for London                                                   |  |
|                         | Waterlogged ground when water                                               | Lead Local Flood Authorities                                             |  |
| Groundwater             | pools on the surface                                                        | Landowners                                                               |  |
|                         |                                                                             | Lead Local Flood Authorities                                             |  |
| Rivers and watercourses | Water draining into rivers and                                              | <ul> <li>Environment Agency</li> <li>/Natural Resources Wales</li> </ul> |  |
|                         | streams from nearby land                                                    | Riparian Owners                                                          |  |
|                         |                                                                             | Landowners                                                               |  |
| Coastal/Tidal           |                                                                             | Local Authorities                                                        |  |
|                         | Rough seas, high tides or storm<br>inundation on lower land                 | Environment Agency                                                       |  |
|                         |                                                                             | Natural Resources Wales                                                  |  |
|                         | Most properties drain rainfall to a public sewer, including flows from      | Water and wastewater companies                                           |  |
|                         | gutters/roads that end up in public                                         | Local Authorities                                                        |  |
| Surface water sewers    | sewers. Highway drainage is provided for rainfall onto the highway but also | Housing Associations                                                     |  |
|                         | includes water from fields/other property that finds its way onto the       | Private landowners                                                       |  |
|                         | highway                                                                     | Highway Authorities                                                      |  |
| Public sewers           | Sewer flooding from manholes and covers                                     | Water and wastewater companies                                           |  |
| Private sewers          | Flooding from cesspits/septic tanks, toilets or internal drains             | Homeowners                                                               |  |

South West Water needs clear long-term plans in order to engage with other Risk Management Authorities (RMAs) to produce joined-up approaches and deliver the best outcomes for customers and the environment.

## **Current Performance**

For all performance measures, the average number of events in a catchment/ Special Protection Area (SPA), is calculated from performance data and normalised to sewer length, (e.g., floodings/km of sewer). This catchment average is then compared to the average number of events across all SPAs and, using the Jenks Natural Breaks Classification System, catchments are defined as average, above average or below average.

#### **Sewer Flooding**

Sewer flooding incidents may occur for a number of reasons, including network misuse, asset deterioration, asset failures (collectively referred to as "other causes") or hydraulic incapacity. Tables 4 and 5 provide a summary of internal and external flooding events respectively. Sewer flooding event locations are shown in Figure 3.

The rate (events/km) of internal sewer flooding in the Exe catchment is average when compared to other Level 2 catchments.

|      | -                 |                         |          |
|------|-------------------|-------------------------|----------|
| Year | Flooding Location | Flooding Cause Category | Count/km |
| 2019 | Internal          | Hydraulic Overload      | 1        |
| 2019 | Internal          | Other                   | 13       |
| 2020 | Internal          | Hydraulic Overload      | 4        |
| 2020 | Internal          | Other                   | 19       |
| 2021 | Internal          | Hydraulic Overload      | 1        |
| 2021 | Internal          | Other                   | 13       |
| 2022 | Internal          | Hydraulic Overload      | 2        |
| 2022 | Internal          | Other                   | 11       |
| 2023 | Internal          | Hydraulic Overload      | 3        |
| 2023 | Internal          | Other                   | 10       |

#### **Table 4**: Count of Internal Flooding by location and cause

The rate (events/km) of external sewer flooding in the Exe catchment is above average when compared to other Level 2 catchments.

|      | ,                 | 0 9                     |          |
|------|-------------------|-------------------------|----------|
| Year | Flooding Location | Flooding Cause Category | Count/km |
| 2019 | External          | Hydraulic Overload      | 11       |
| 2019 | External          | Other                   | 168      |
| 2020 | External          | Hydraulic Overload      | 12       |
| 2020 | External          | Other                   | 197      |
| 2021 | External          | Hydraulic Overload      | 19       |
| 2021 | External          | Other                   | 123      |
| 2022 | External          | Hydraulic Overload      | 18       |
| 2022 | External          | Other                   | 161      |
| 2023 | External          | Hydraulic Overload      | 17       |
| 2023 | External          | Other                   | 199      |

## Table 5: Count of External Flooding by location and cause

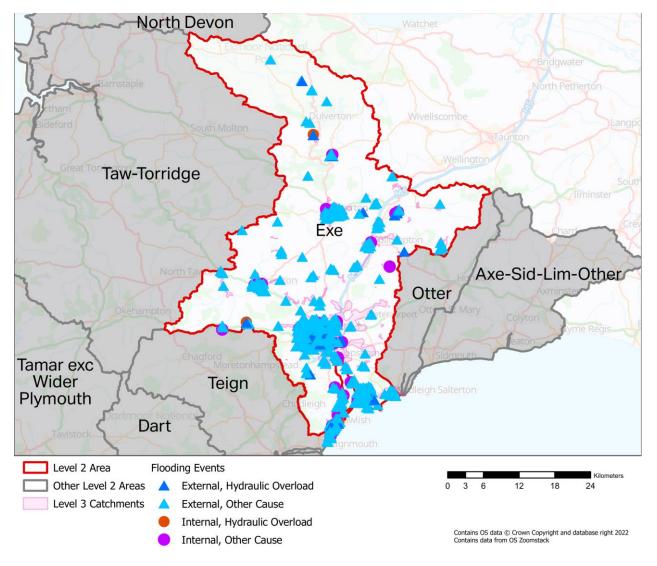



Figure 3: Sewer Flooding by location and cause

An assessment of future flooding risk has been carried out; the modelling approach is summarised further through this document in Table 22 (Future Flood Risk column).

#### **Storm Overflows**

Hydraulic overload is when the network cannot convey the runoff from heavy rainfall and can lead to sewer flooding and spills from overflows. It can be exacerbated by groundwater and surface water entering the sewerage system.

Figure 4 shows the approximate locations of all overflows. South West Water has a programme to monitor the current use and performance of storm overflows and 100% of the overflows are currently monitored. Table 6 below provides a summary of any available performance data for storm overflows in the catchment.

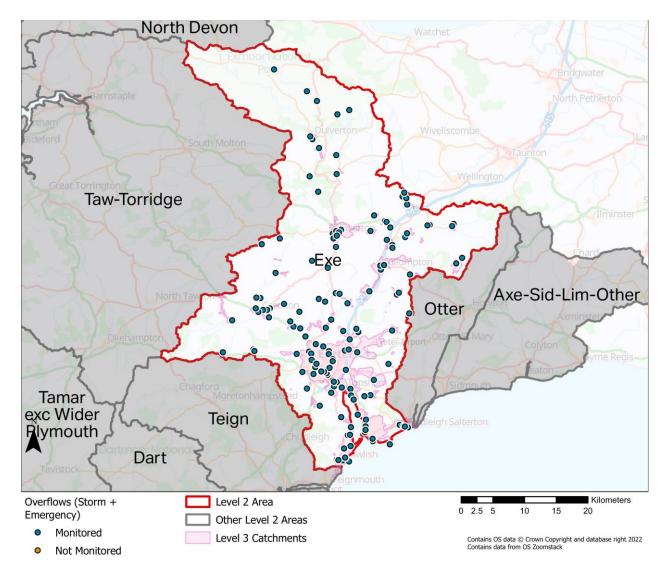



Figure 4: Overflow locations by monitoring status

| Year          | 2019 | 2020 | 2021 |
|---------------|------|------|------|
| No. Monitored | 164  | 167  | 182  |
| No. Spills    | 4300 | 4875 | 4559 |

Table 6: Storm Overflow Performance Summary

#### **Blockages**

Blockages are caused by a variety of items, materials, substances and vegetation entering the network. In the case of vegetation, this may be root ingress from trees/shrubs that enter through damaged areas and joints. In other cases, silt and debris may be washed in through the surface water network and items such as wet wipes, fat or grease may be flushed into the network directly from homes and businesses.

Misuse of the network continues to be a significant issue across the region. Network misuse is defined as flushing anything other than the three Ps (Pee, Poo and toilet Paper) down

toilets. Wet wipes, nappies and sanitary products should not be flushed regardless of their labelling. Fats, oils and grease should not be poured down sinks in the kitchen as these can congeal in and eventually block the sewer (known as a 'Fatberg'). Sewer misuse can lead to blockages which can cause sewer flooding and pollution.

South West Water has a number of community based education programmes including <u>Love</u> <u>your Loo</u> and <u>Think Sink!</u> that aim to prevent sewer misuse and reduce associated sewer flooding problems.

The rate of blockages in the Exe catchment is average when compared to other catchments in South West Water area. Blockages since the 2018/19 reporting year are shown below in Table 7 (split by the blockage cause code) and the locations indicated by the heat map in Figure 5. Please contact us if you require additional information on blockages in the Exe catchment.

| Year | Debris | Fat | Paper/Rag | Roots | Silt | Third<br>Party<br>Damage |
|------|--------|-----|-----------|-------|------|--------------------------|
| 2019 | 140    | 136 | 654       | 124   | 23   | _                        |
| 2020 | 187    | 90  | 590       | 95    | 12   | 1                        |
| 2021 | 173    | 74  | 511       | 82    | 12   |                          |
| 2022 | 143    | 62  | 609       | 55    | 17   |                          |
| 2023 | 178    | 71  | 595       | 104   | 12   | 2                        |

**Table 7**: Count of blockages by year and cause

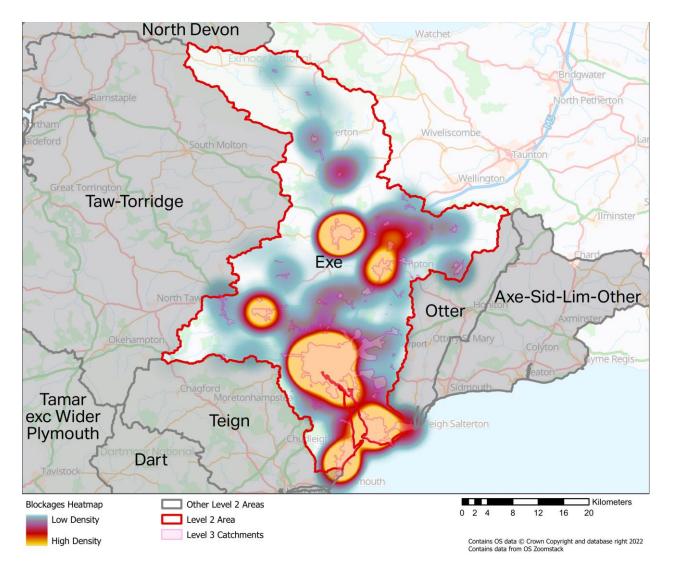



Figure 5: Blockage Event Heatmap

#### **Asset Condition**

#### **Gravity Network**

A programme of CCTV inspections is undertaken to determine the structural condition of sewers. A risk-based approach is applied, considering frequency of failure and consequence of failure. The sewers in most need of attention due to their condition are prioritised for more frequent inspection or rehabilitation.

The rate of collapses in the Exe catchment is average when compared to other catchments in the region. A heatmap of sewer collapses since the 2018/19 reporting year is shown in Figure 6 below. Table 8 provides a count of collapse and partial collapse events since the 2018/19 reporting year.

| Year | Collapse | Partial<br>Collapse |
|------|----------|---------------------|
| 2019 | 7        | 24                  |
| 2020 | 18       | 7                   |
| 2021 | 12       | 2                   |
| 2022 | 9        | 5                   |
| 2023 | 5        | 1                   |

Table 8: Count of sewer collapse by year

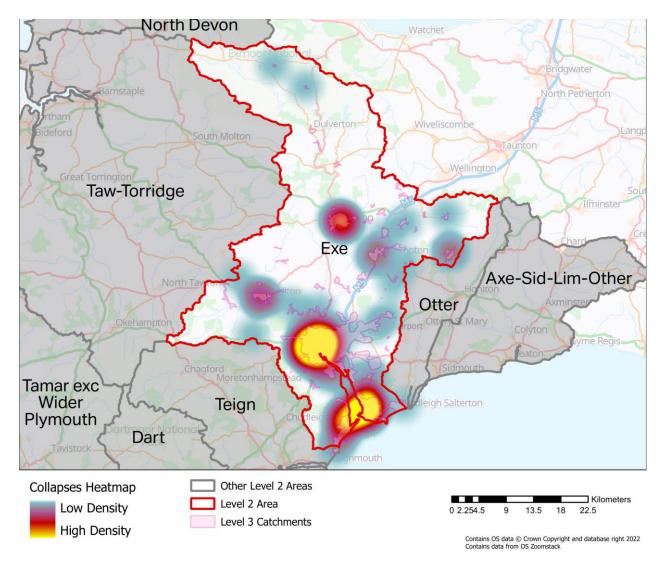



Figure 6: Sewer Collapse Heatmap

#### **Pumped Network (Rising Mains)**

South West Water continuously invests in sewage pumping stations (SPS) and rising mains. Rising main failures are repaired promptly by reactive teams, and if repeat failures are experienced or immediate works are identified, they are prioritised for replacement.

Table 9 provides a count of flooding events caused as a result of issues at pumping stations and Table 10 provides a count of rising main bursts since the 2018/19 reporting year. Flooding and burst locations are shown in Figure 7.

| Year | Feedback Cause                        | Count |
|------|---------------------------------------|-------|
| 2019 | Pump Station<br>Breakdown             | 5     |
| 2020 | Hydraulic Overload<br>Pumping Station | 1     |
| 2020 | Pump Station<br>Breakdown             | 2     |
| 2022 | Hydraulic Overload<br>Pumping Station | 1     |
| 2022 | Pump Station<br>Breakdown             | 1     |
|      |                                       |       |

 Table 9: Count of SPS flooding by year/cause

| <b>Table 10</b> : | Count of Rising | Main bursts | by year/cause |
|-------------------|-----------------|-------------|---------------|
|-------------------|-----------------|-------------|---------------|

| Year | Feedback Cause Count |   |
|------|----------------------|---|
| 2019 | Collapse/Burst       | 1 |
| 2020 | Collapse/Burst       | 6 |
| 2021 | Collapse/Burst       | 6 |
| 2022 | Collapse/Burst       | 3 |

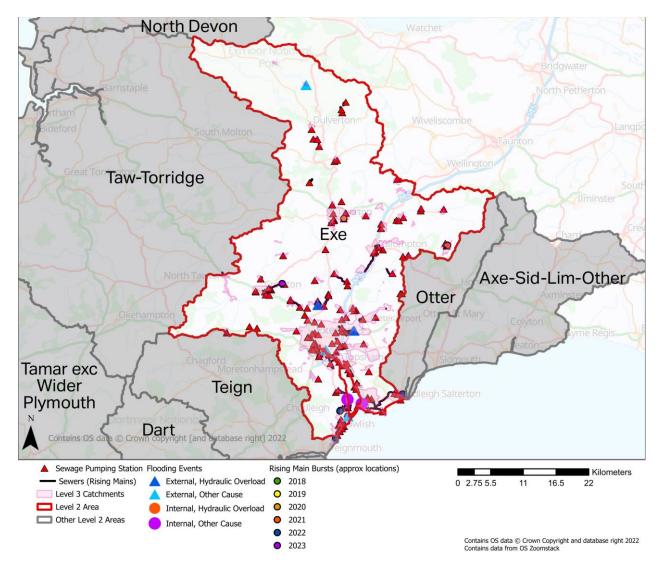



Figure 7: SPS/Rising Main flooding and burst events

### **Environmental Performance**

#### **Surface Water Flooding**

South West Water is only responsible for sewer flooding. Areas prone to surface water flooding (due to rainfall and pooling at low points in the landscape) can be seen on the <u>EA</u> <u>website</u>. The responsibilities for other types of drainage and flooding are summarised in Table 3 earlier in this document.

#### Pollution

South West Water is continuing to strive to eliminate harmful pollution to the environment. This includes there being no Category 1 and 2 (the most harmful) pollution incidents. South West Water's vision for Environmental performance can be found on the website <u>here</u>.

There have been 54 Category 1 or 2 pollution incidents in the Exe catchment from 2018-2022.

Table 11 provides a summary of pollution events by year and the category of environmental impact. The map in Figure 8 shows the location of pollution events. Clusters of pollution events are identified for further investigations and activities to reduce and/or remove the future risk of pollution events occurring.

| Year | Water Env Category Level | Count |
|------|--------------------------|-------|
| 2019 | 3                        | 18    |
| 2020 | 3                        | 13    |
| 2021 | 2                        | 1     |
| 2021 | 3                        | 18    |
| 2022 | 3                        | 14    |
|      |                          |       |

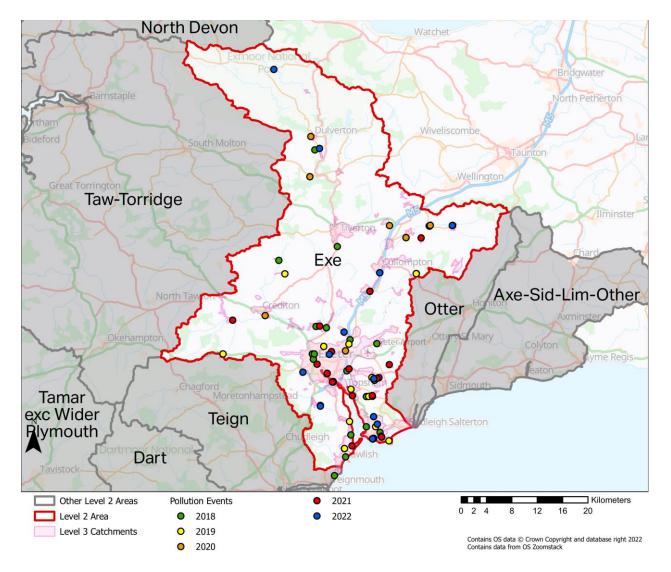



Figure 8: Pollution Events

#### **Critical Drainage Areas**

A Critical Drainage Area (CDA) is an area with critical drainage problems, which has been formally notified to the Local Authority by the Environment Agency. Within CDAs, proposed development may present risks of flooding on-site and/or off-site if the surface water runoff is not effectively managed.

The purpose of creating the CDA allocation is to reduce downstream flooding by controlling the accumulative impact of surface water runoff from multiple development sites in sensitive catchment areas. This means that any site discharging surface water to a watercourse or public sewer must attenuate the flow to mimic the green field runoff for a 1:10 year rain fall event. Where the surface water can be managed within the site for the "1:100+40%" condition (i.e., an allowance of 40% over and above the 1:100 event), there is no change to the standard surface water drainage requirement.

The Development Management Procedure Order requires that the EA is consulted on developments within Areas with Critical Drainage Problems (ACDPs). The map in Figure 9 shows the geographical coverage of ACDPs in the Exe catchment.

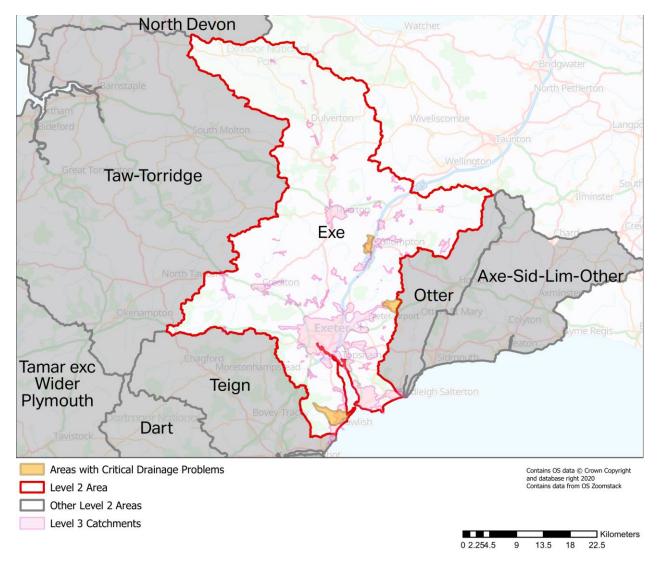



Figure 9: Critical Drainage Areas

#### Wastewater Treatment Compliance

Each Wastewater Treatment Works has a permit, as agreed with the EA, for the quantity and quality of the water that is discharged to the environment.

The Exe catchment has failed some wastewater treatment compliance checks since the 2018/19 reporting year. These are shown in Table 12.

| Asset Equipment Name                | Year | Fail Type    | Parameter    |
|-------------------------------------|------|--------------|--------------|
| KENTON &<br>STARCROSS_STW_STARCROSS | 2019 | Disinfection | 24 Hour Rule |

Table 13 shows the Dry weather flow (DWF) performance of the treatment works in the Exe catchment.

| Asset Name                                | Permitted<br>(m3/d) | Comments                          |
|-------------------------------------------|---------------------|-----------------------------------|
| AYLESBEARE_STW_AYLESBEARE                 | 103                 | Spare capacity<br>available       |
| BAMPTON_STW_BAMPTON                       | 230                 | Approaching<br>design<br>capacity |
| BRADNINCH_STW_BRADNINCH                   | 404                 | Spare capacity<br>available       |
| BRAMPFORD<br>SPEKE_STW_BRAMPFORD SPEKE    | 104                 | Spare capacity<br>available       |
| BRUSHFORD_STW_BRUSHFORD                   | 124                 | Spare capacity<br>available       |
| BURLESCOMBE_STW_BURLESCO<br>MBE           | 155                 | Spare capacity<br>available       |
| CHERITON<br>BISHOP_STW_CHERITON<br>BISHOP | 144                 | Spare capacity<br>available       |
| CHERITON<br>FITZPAINE_STW_CREDITON        | 115                 | Spare capacity<br>available       |
| COUNTESS WEAR_STW_EXETER                  | 40,486              | Spare capacity<br>available       |
| CULLOMPTON_STW_CULLOMPT<br>ON             | 2,955               | Approaching<br>design<br>capacity |
| CULMSTOCK_STW_CULMSTOCK                   | 118                 | Spare capacity<br>available       |
| DULVERTON_STW_DULVERTON                   | 468                 | Spare capacity<br>available       |
| DUNKESWELL_STW_DUNKESWE<br>LL             | 314                 | Spare capacity<br>available       |
| EXFORD_STW_EXFORD                         | 120                 | Spare capacity<br>available       |
| HALBERTON_STW_HALBERTON                   | 208                 | Spare capacity<br>available       |
| HEMYOCK_STW_HEMYOCK                       | 446                 | Spare capacity<br>available       |
| HOLCOMBE<br>ROGUS_STW_HOLCOMBE<br>ROGUS   | 119                 | Spare capacity<br>available       |
| KENN &<br>KENNFORD_STW_EXETER             | 262                 | Spare capacity<br>available       |

 Table 13: Dry weather flow results and permits from 2018-2020

| Asset Name                                   | Permitted<br>(m3/d) | Comments                          |
|----------------------------------------------|---------------------|-----------------------------------|
| KENTON &<br>STARCROSS_STW_STARCROSS          | 1,750               | Spare capacity<br>available       |
| LORDS<br>MEADOW_STW_CREDITON                 | 4,100               | Spare capacity<br>available       |
| MAER LANE_STW_EXMOUTH                        | 11,825              | Spare capacity<br>available       |
| NEWTON ST<br>CYRES_STW_NEWTON ST CYRES       | 300                 | Spare capacity<br>available       |
| PLYMTREE_STW_PLYMTREE                        | 97                  | Spare capacity<br>available       |
| REWE_STW_REWE                                | 429                 | Approaching<br>design<br>capacity |
| SAMPFORD<br>PEVERELL_STW_SAMPFORD<br>PEVEREL | 296                 | Spare capacity<br>available       |
| SANDFORD_STW_SANDFORD                        | 118                 | Spare capacity<br>available       |
| SILVERTON_STW_SILVERTON                      | 562                 | Spare capacity<br>available       |
| TEDBURN ST<br>MARY_STW_TEDBURN ST MARY       | 383                 | Spare capacity<br>available       |
| THORVERTON_STW_THORVERT<br>ON                | 309                 | Spare capacity<br>available       |
| TIMARU_STW_DAWLISH                           | 4,856               | Spare capacity<br>available       |
| TIVERTON_STW_TIVERTON                        | 6,900               | Spare capacity<br>available       |
| UFFCULME_STW_UFFCULME                        | 564                 | Spare capacity<br>available       |
| UPLOWMAN_STW_TIVERTON                        | 42                  | Spare capacity<br>available       |
| WILLAND_STW_WILLAND                          | 613                 | Spare capacity<br>available       |
| WINSFORD_STW_WINSFORD                        | 84                  | Spare capacity<br>available       |
| WOODBURY_STW_WOODBURY                        | 408                 | Spare capacity<br>available       |
| YEOFORD_STW_CREDITON                         | 493                 | Spare capacity<br>available       |

#### Water Quality

When untreated/partially treated wastewater is discharged to a watercourse it may have potential to affect the downstream environment including river and coastal areas. This will be dependent on the duration of any discharge and the dilution offered by the receiving watercourse. This discharge could be from blockages in the sewerage network, wastewater spills or leaks, from misconnections (when wastewater from households is incorrectly connected to the surface water sewer) or from storm overflows. The EA has overall responsibility for water quality in water courses, although South West Water work in partnership to reduce and remove possible sources of pollution.

Our dedicated Upstream Thinking (UST) team engages with farmers and landowners to make changes in how land is managed, ensuring our drinking water sources are protected from diffuse pollution. Starting on the high moorlands and focusing on the land next to rivers, we collaborate to make water management plans that protect streams and rivers while keeping farms productive.

The EA assesses why waterbodies do not achieve a "good" status. Table 14 below provides a summary of the significant water management issues and the associated activities identified as part of the analysis for the Exe catchment.

| Significant water management issue (SWMI)       | Activity                                          | Count |
|-------------------------------------------------|---------------------------------------------------|-------|
| Changes to the natural flow and levels of water | Surface water abstraction                         |       |
|                                                 | North american signal crayfish                    | 3     |
| Non-native invasive species                     | Other riparian plants                             | 3     |
|                                                 | Barriers - ecological discontinuity               | 14    |
|                                                 | Flood protection - structures                     | 1     |
| Physical modifications                          | Other (not in list, must add details in comments) | 7     |
|                                                 | Reservoir / Impoundment - non flow related        | 1     |
|                                                 | Urbanisation - transport                          | 1     |
|                                                 | Farm/site infrastructure                          | 20    |
|                                                 | Forestry                                          | 1     |
|                                                 | Poor Livestock Management                         | 60    |
| Pollution from rural areas                      | Poor nutrient management                          | 49    |
|                                                 | Poor pesticide management                         | 3     |
|                                                 | Poor soil management                              | 53    |

Table 14: Reasons for not achieving 'Good' water quality status

| ignificant water management issue (SWMI)   | Activity                                            | Count |
|--------------------------------------------|-----------------------------------------------------|-------|
|                                            | Riparian/in-river activities (inc bankside erosion) | 21    |
|                                            | Contaminated land                                   | 2     |
|                                            | Misconnections                                      | 3     |
|                                            | Other (not in list, must add details in comments)   | 2     |
| Pollution from towns, cities and transport | Private Sewage Treatment                            | 1     |
|                                            | Septic Tanks                                        | 9     |
|                                            | Trade/Industry discharge                            | 6     |
|                                            | Urbanisation - urban development                    | 4     |
|                                            | Discharge                                           | 43    |
|                                            | Discharge (intermittent)                            | 3     |
| Pollution from wastewater                  | Incidents                                           | 1     |
|                                            | Other (not in list, must add details in comments)   | 1     |
|                                            | Barriers - ecological discontinuity                 | 1     |
|                                            | Drought                                             | 2     |
| _                                          | Natural conditions - other                          | 2     |
| -                                          | Not applicable                                      | 6     |
|                                            | Other (not in list, must add details in comments)   | 2     |
|                                            | Unknown (pending investigation)                     | 1     |

## Future challenges in the catchment

#### Growth

New developments can cause an increase in the volume of wastewater requiring conveyance and treatment. Improvements to the foul sewerage system to support new development will be assessed by South West Water's New Developments Team and infrastructure charges paid by new developments will fund required upgrades to ensure sewer flooding risk is not increased. There are multiple sources of growth information for the region.

To understand where development and specific areas of growth can be expected, the local plans as published by the Local Planning Authority (LPA) are a reasonable source of information.

The LPA polygons showing areas earmarked for development can be found in Figure 10 at the end of this section.

#### **Climate Change and Urban Creep**

Climate change is likely to increase the intensity of rainfall leading to higher risk of flooding in the future; however, the magnitude and timing of this change is highly uncertain.

The potential increase in rainfall intensity could inundate the combined sewer networks and cause surface water and sewer flooding. Changing patterns of summer storms could affect the frequency and volume of spills from storm overflows and consequently impact on the river and bathing water quality downstream.

Urban creep can also pose a challenge for managing South West Water's drainage and wastewater networks. Urban creep occurs when minor extensions to homes are built or when existing permeable areas e.g., gardens are paved over to provide patios or for car parking. The result is an overall increase in impermeable area contributing directly to fast runoff to the urban drainage system and consequent increase in the risk of flooding

#### **Future Challenges**

216 potential development locations are recorded for this catchment. Table 15 summarises the different types of development planned in the catchment and Figure 10 shows the location and extent of land proposed for development that have been identified in local development plans at the time of writing. Please refer to the local authorities Local Plan for the most current information.

| Number in<br>Catchment |
|------------------------|
| 3                      |
| 14                     |
| 1                      |
| 2                      |
| 166                    |
| 40                     |
| 9                      |
| 1                      |
| 1                      |
| 1                      |
|                        |

# Table 15: Summary of Proposed Developments

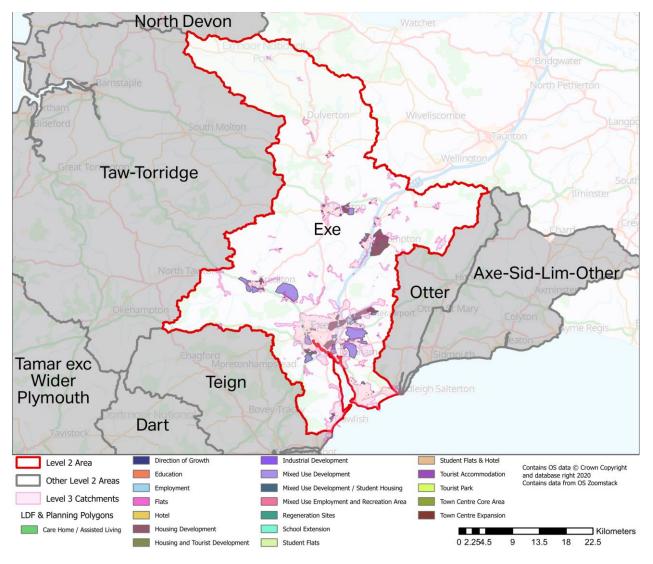



Figure 10: Local Development Framework Areas

## **Catchment Strategy**

#### **Partnership Working**

South West Water is working in partnership with multiple organisations including the EA, local authorities and other stakeholders such as landowners, local residents and community groups. The purpose of this work is to understand the causes of drainage and wastewater issues and to progress joint projects to resolve them where appropriate. For example, partnership working opportunities may exist where properties are located within haracteri flood zones (FZ2, FZ3 and/or Surface Water) which can be found <u>here</u>.

#### **Investment Routes**

#### **Reactive Investment**

Reactive investment needs are identified via investigations following reactive response to operational/customer issues and planned surveys that are targeted to detect and resolve problems before they have an impact on customers and the environment.

The investment needs are haracteriz based on the risk to properties and the identification of repeat events. These needs then form a programme of targeted investments for delivery over the next 12 months. Details for any needs recorded for the Exe catchment are haracteri in Table 16.

Ninety-Nine investment needs are recorded for this catchment. Locations are shown in Figure 11.

|                           | Capital Maintenance | Health & Safety | NA | Total |
|---------------------------|---------------------|-----------------|----|-------|
| AM Review                 | 1                   |                 |    | 1     |
| Completed                 | 15                  | 1               | 1  | 17    |
| Confirm Scope             | 47                  |                 | 1  | 48    |
| Contractor Scoping        | 6                   |                 |    | 6     |
| Investment Initialisation | 2                   |                 |    | 2     |
| Programmed                | 3                   |                 |    | 3     |
| <b>Quotation Review</b>   | 1                   |                 |    | 1     |
| Review Scope              | 8                   |                 | 1  | 9     |
| Total                     | 83                  | 1               | 3  | 87    |

| Table 16: | Summary of Reactive | Investment Opportunities |
|-----------|---------------------|--------------------------|
|-----------|---------------------|--------------------------|

#### WINEP Investment

The Water Industry National Environment Programme (WINEP) is the programme of work where water companies work collaboratively with Environmental regulators and other stakeholders to investigate, identify and agree investment needs to deliver specific environmental improvements. Water companies in England then undertake to deliver this to meet their obligations from environmental legislation and UK government policy. The tables below indicate the WINEP investigation and implementation schemes for the Exe catchment if present, with locations are shown in Figure 11.

There are currently 35 investigations planned in this catchment, as shown in Table 17.

| WINEP ID | Name of<br>Waterbody | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Investigations Scope | Additional<br>Comments                                                                                          |
|----------|----------------------|-------------------|-------------|-------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|
| DCS00065 | Lower<br>Batherm     | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monitor<br>to measure PFF. |
| DCS00143 | Lower Culm           | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monitor<br>to measure PFF. |
| DCS00183 | lower barle          | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monitor<br>to measure PFF. |
| DCS00209 | Spratford<br>Stream  | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monitor                    |

 Table 17:
 WINEP Investigations

30 | Our DWMP Level 2 Plan Exe

| WINEP ID | Name of<br>Waterbody      | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Investigations Scope | Additional<br>Comments                                                                                         |
|----------|---------------------------|-------------------|-------------|-------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
|          |                           |                   |             |                               |                      | to measure PFF.                                                                                                |
| DCS00253 | Ford Brook<br>(Exe)       | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00256 | Holly Water               | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00329 | Lower Creedy              | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00335 | Middle Culm               | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00428 | EXE                       | Transitional      | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00436 | Exe (Source to<br>Quarme) | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito                    |

| WINEP ID | Name of<br>Waterbody | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Investigations Scope | Additional<br>Comments                                                                                         |
|----------|----------------------|-------------------|-------------|-------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
|          |                      |                   |             |                               |                      | to measure PFF.                                                                                                |
| DCS00565 | Middle Culm          | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00577 | Spratford<br>Stream  | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00814 | Lower Creedy         | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00928 | Upper Clyst          | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS00982 | Lower Culm           | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS01011 | Spratford<br>Stream  | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito                    |

| WINEP ID | Name of<br>Waterbody   | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Investigations Scope | Additional<br>Comments                                                                                         |
|----------|------------------------|-------------------|-------------|-------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|
|          |                        |                   |             |                               |                      | to measure PFF.                                                                                                |
| DCS01014 | Middle Creedy          | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS01032 | Lower Culm             | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS01205 | Exe (Barle to<br>Culm) | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS01241 | Lower Culm             | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS01314 | Polly Brook            | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF. |
| DCS01328 | Upper Yeo<br>(Creedy)  | River             | U_INV2      | 2022-03-31                    | n/a                  | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito                    |

| WINEP ID | Name of<br>Waterbody                                | Waterbody<br>Type                                   | Driver Code        | Planned<br>Completion<br>Date | Investigations Scope                                                                                                                                                                                  | Additional<br>Comments |
|----------|-----------------------------------------------------|-----------------------------------------------------|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|          |                                                     |                                                     |                    |                               |                                                                                                                                                                                                       | to measure PFF.        |
| CHM00180 | n/a                                                 | n/a                                                 | WFD_INV_CHE<br>M3  | 2021-09-30                    | Investigation to be carried out in accordance with<br>the requirements detailed in the current UKWIR<br>CIP3 Technical Specification and Guidance                                                     | n/a                    |
| CHM00181 | n/a                                                 | n/a                                                 | WFD_INV_CHE<br>M5  | 2021-09-30                    | Investigation to be carried out in accordance with<br>the requirements detailed in the current UKWIR<br>CIP3 Technical Specification and Guidance                                                     | n/a                    |
| CHM00183 | Exe (Creedy to<br>Estuary)                          | River                                               | WFD_INV_CHE<br>M14 | 2021-09-30                    | Investigation to be carried out in accordance with<br>the requirements detailed in the current UKWIR<br>CIP3 Technical Specification and Guidance                                                     | n/a                    |
| CHM00184 | Madford River                                       | River                                               | WFD_INV_CHE<br>M11 | 2021-09-30                    | Investigation to be carried out in accordance with<br>the requirements detailed in the current UKWIR<br>CIP3 Technical Specification and Guidance                                                     | n/a                    |
| CHM00195 | n/a                                                 | n/a                                                 | WFD_INV_CHE<br>M12 | 2021-09-30                    | Investigation to be carried out in accordance with<br>the requirements detailed in the current UKWIR<br>CIP3 Technical Specification and Guidance                                                     | n/a                    |
| CHM00200 | n/a                                                 | n/a                                                 | WFD_INV_CHE<br>M8  | 2021-09-30                    | Project management costs and Synthesis report costs for investigations                                                                                                                                | n/a                    |
| CHM00201 | n/a                                                 | n/a                                                 | WFD_INV_CHE<br>M1  | 2021-09-30                    | Investigation to be carried out in accordance with<br>the requirements detailed in the current UKWIR<br>CIP3 Technical Specification and Guidance                                                     | n/a                    |
| BAW00013 | Catchment<br>Scale: - see<br>additional<br>comments | Catchment<br>Scale: - see<br>additional<br>comments | BW_INV4            | 2022-09-30                    | Catchment investigation to understand what<br>water company action would be needed to<br>achieve a robust classification of Excellent (less<br>than 20% risk of failing planning class of Excellent). | n/a                    |
| EDM00542 | Lower                                               | River                                               | U_INV              | 2022-03-31                    | Undertake full investigation following the Storm<br>Overflow Assessment Framework to Stage 4                                                                                                          | n/a                    |

| WINEP ID | Name of<br>Waterbody | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Investigations Scope                                                                                                                                                                                                                                                                                                                       | Additional<br>Comments                                                                                                |
|----------|----------------------|-------------------|-------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|          | Bartherm             |                   |             |                               | (Decision), including Environmental Impact<br>Assessment and Cost Benefit Assessment of<br>Options to determine an agreed (between WaSC<br>and Environment Agency) outcome (Need for spill<br>reduction scheme and detail of that scheme).                                                                                                 |                                                                                                                       |
| EDM00550 | Exe                  | Transitional      | U_INV       | 2022-03-31                    | Undertake full investigation following the Storm<br>Overflow Assessment Framework to Stage 4<br>(Decision), including Environmental Impact<br>Assessment and Cost Benefit Assessment of<br>Options to determine an agreed (between WaSC<br>and Environment Agency) outcome (Need for spill<br>reduction scheme and detail of that scheme). | n/a                                                                                                                   |
| FLO00607 | Lyme Bay<br>West     | Coastal           | U_INV2      | 2022-03-31                    | n/a                                                                                                                                                                                                                                                                                                                                        | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF.        |
| FLO00622 | Halberton<br>Stream  | River             | U_INV2      | 2022-03-31                    | n/a                                                                                                                                                                                                                                                                                                                                        | Relationship betweer<br>spills and Final Effluen<br>flow measurement to<br>be investigated to<br>prove FTT compliance |
| FLO00705 | n/a                  | n/a               | U_INV2      | 2022-03-31                    | n/a                                                                                                                                                                                                                                                                                                                                        | U_INV2 Investigation<br>required as to<br>suitability of existing<br>inlet or outlet monito<br>to measure PFF.        |

There are currently 17 implementations planned in this catchment, as shown in Table 18.

| WINEP ID | Name of<br>Waterbody      | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Implementation Scope                                                                             | Additional<br>Comments                                                             |
|----------|---------------------------|-------------------|-------------|-------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| DCS00060 | Aylesbeare<br>stream      | River             | U_IMP6      | 2023-03-31                    | n/a                                                                                              | n/a                                                                                |
| DCS00066 | Lower<br>Batherm          | River             | U_IMP5      | 2023-03-31                    | n/a                                                                                              | n/a                                                                                |
| DCS00327 | Lower Creedy              | River             | WFD_IMPg    | 2024-12-22                    | n/a                                                                                              | n/a                                                                                |
| DCS00346 | Dawlish Water             | River             | BW_IMP3     | 2025-03-31                    | Average of no more than 2 spills per<br>bathing seasons > 50m3 at DAWLISH SSO<br>(BROOK STREET). | See column AD<br>–<br>Implementatic<br>n scope.                                    |
| DCS00377 | Lower Barle               | River             | U_IMP5      | 2023-03-31                    | n/a                                                                                              | n/a                                                                                |
| DCS00378 | Madford River             | River             | WFD_IMPg    | 2024-12-22                    | n/a                                                                                              | n/a                                                                                |
| DCS00437 | Exe (Source to<br>Quarme) | River             | U_IMP6      | 2023-03-31                    | n/a                                                                                              | n/a                                                                                |
| DCS00563 | Middle Culm               | River             | WFD_IMPg    | 2024-12-22                    | n/a                                                                                              | n/a                                                                                |
| DCS00622 | Kenn                      | River             | WFD_IMPg    | 2024-12-22                    | n/a                                                                                              | n/a                                                                                |
|          |                           |                   |             |                               |                                                                                                  | See column AI                                                                      |
| DCS00754 | Lyme Bay<br>West          | Coastal           | BW_IMP3     | 2025-03-31                    | Average of no more than 2 spills per<br>bathing seasons > 50m3 at Meadow Road<br>Tank CSO.       | -<br>Implementation<br>n scope.<br>Scheme<br>subject to<br>'willingness to<br>pay' |

## Table 18: WINEP Implementations

| WINEP ID | Name of<br>Waterbody  | Waterbody<br>Type | Driver Code | Planned<br>Completion<br>Date | Implementation Scope | Additional<br>Comments |
|----------|-----------------------|-------------------|-------------|-------------------------------|----------------------|------------------------|
| DCS01012 | Spratford<br>Stream   | River             | U_IMP6      | 2025-03-31                    | n/a                  | n/a                    |
| DCS01243 | Lower Culm            | River             | U_IMP6      | 2025-03-31                    | n/a                  | n/a                    |
| DCS01288 | Lower Culm            | River             | WFD_IMPg    | 2024-12-22                    | n/a                  | n/a                    |
| DCS01329 | Upper Yeo<br>(Creedy) | River             | U_IMP5      | 2025-03-31                    | n/a                  | n/a                    |
| DCS01330 | Upper Yeo<br>(Creedy) | River             | U_IMP6      | 2025-03-31                    | n/a                  | n/a                    |
| FLO00620 | Halberton<br>Stream   | River             | U_IMP6      | 2024-03-31                    | n/a                  | n/a                    |
| FLO00630 | Kenn                  | River             | U_IMP5      | 2024-03-31                    | n/a                  | n/a                    |

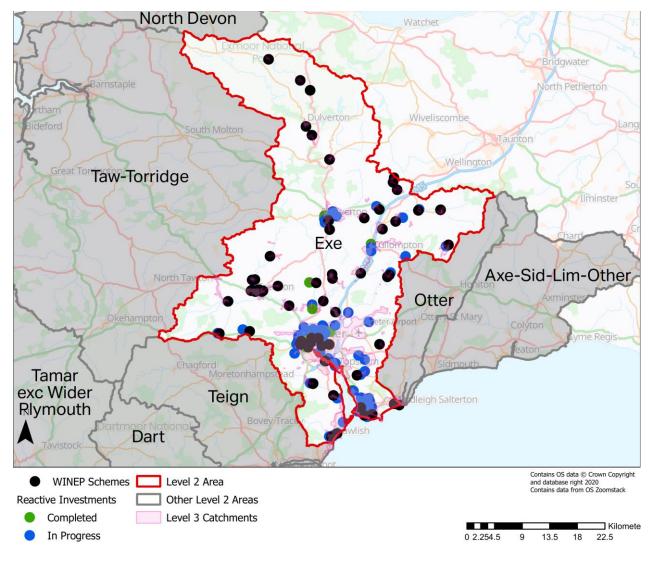



Figure 11: Reactive and WINEP Investment locations

## **Medium and Long-Term Plans**

## Overview

The following sections of this document outline South West Water's current analysis and medium to long-term proposals. In particular, they present the option developments and appraisals that will be used during the next price review and planning for future Asset Management Planning cycles (AMPs).

Outputs from the following DWMP process stages are haracteri in the following sections and form the primary content for consultation:

- Risk-based catchment screening
- Baseline risk and vulnerability assessment
- Bespoke planning objectives
- Resilience scoring
- Problem haracterization
- Options appraisal

The DWMP will inform South West Water's future business plans based on the best available knowledge today. There is uncertainty in the future linked to finance, regulation/legislation, environmental and climate changes. This is a long-term, iterative process, so the plans may change in the future to reflect the future needs of the Exe catchment.

### **Risk Based Catchment Screening**

The Risk based Catchment Screening exercise (RBCS) was carried out across all of South West Water's 653 Level 3 Tactical Planning Units (TPUs), screening each one in order that the effort could be best focused where it was most appropriately needed. From this assessment exercise it was determined that 373 catchments were identified as being potentially 'at risk' of environmental or community impact deteriorating in the future and were to proceed to the Baseline Risk & Vulnerability Assessment (BRAVA) stage for assessment under those criteria. Each catchment was assessed against a range of indicators shown in Table 19, to identify the catchments that require a more detailed investigation. The information and data required for the assessment is readily available from company reporting systems and from stakeholders. Indicators have been classified into two tiers, which enables us to prioritise the indicators when assessing if further assessment is required. Only two indicators are Tier 2:

- Catchment haracterization
- Continuous or intermittent discharges impact upon sensitive receiving waters

All other indicators are Tier 1 indicators.

When a catchment or TPU is identified as needing further assessment, this is described as an "indicator breach" in the RBCS process. This is not a performance breach but rather a trigger to further evaluate or assess certain indicator/indicators in the next stage of the DWMP process.

The results for the Level 3 catchments within the Exe catchment are in the RBCS Summary (Table 19) below.

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | WINEP | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|-------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 53115                    | Initial           | 736.1                       | NO                         | NO                          | NO                                        | NO                                           | YES  | YES | NO                      | NO                      | YES                 | NO                | NO                  | YES             | YES               | NO                                 | NO    | NO              | YES             | 5                                      | NO                                   | YES               |
| 53385                    | Initial           | 1,329.9                     | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | YES                 | YES             | NO                | NO                                 | NO    | NO              | YES             | 3                                      | NO                                   | YES               |
| 53395                    | Initial           | 2,042.0                     | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | YES                 | NO                | NO                  | YES             | NO                | NO                                 | NO    | NO              | YES             | 3                                      | NO                                   | YES               |
| 53401                    | Initial           | 343.8                       | YES                        | NO                          | NO                                        | NO                                           | YES  | NO  | YES                     | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 4                                      | NO                                   | YES               |
| 53403                    | Initial           | 715.1                       | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | YES                                  | YES               |
| 53424                    | Enhanc<br>ed      | 168,17<br>0.2               | YES                        | YES                         | NO                                        | NO                                           | YES  | YES | YES                     | NO                      | YES                 | NO                | NO                  | YES             | YES               | YES                                | NO    | YES             | YES             | 9                                      | NO                                   | YES               |
| 53432                    | Initial           | 10,547.<br>2                | YES                        | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | YES                 | NO                | YES                 | NO              | NO                | YES                                | NO    | YES             | YES             | 5                                      | NO                                   | YES               |
| 53444                    | Initial           | 1,224.4                     | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 2                                      | NO                                   | YES               |
| 53462                    | Initial           | 791.3                       | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | YES             | NO                | NO                                 | NO    | NO              | YES             | 2                                      | NO                                   | YES               |
| 53488                    | Initial           | 48,992.<br>2                | YES                        | YES                         | NO                                        | NO                                           | YES  | YES | NO                      | NO                      | YES                 | NO                | NO                  | YES             | NO                | YES                                | NO    | YES             | YES             | 7                                      | NO                                   | YES               |
| 53510                    | Initial           | 467.9                       | NO                         | NO                          | NO                                        | NO                                           | YES  | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 2                                      | NO                                   | YES               |

Table 19: RBCS Summary Table

41 | Our DWMP Level 2 Plan Exe

southwestwater.co.uk

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | WINEP | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|-------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 53517                    | Initial           | 852.2                       | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | YES                 | NO                | YES                 | NO              | NO                | NO                                 | NO    | NO              | YES             | 3                                      | NO                                   | YES               |
| 53520                    | Initial           | 1,153.7                     | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 2                                      | NO                                   | YES               |
| 53545                    | Initial           | 23,079.<br>4                | YES                        | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | YES             | NO                | YES                                | NO    | YES             | YES             | 4                                      | NO                                   | YES               |
| 53551                    | Initial           | 2,462.1                     | YES                        | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | YES                 | NO                | NO                  | YES             | NO                | NO                                 | NO    | YES             | YES             | 4                                      | NO                                   | YES               |
| 53561                    | Initial           | 3,462.0                     | YES                        | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | YES             | NO                | NO                                 | NO    | NO              | YES             | 3                                      | NO                                   | YES               |
| 53569                    | Initial           | 2,092.2                     | YES                        | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 2                                      | NO                                   | YES               |
| 53662                    | Initial           | 346.5                       | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53713                    | Initial           | 1,644.2                     | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | YES                                | NO    | NO              | YES             | 2                                      | NO                                   | YES               |
| 54218                    | Initial           | 18,218.<br>5                | YES                        | YES                         | NO                                        | NO                                           | YES  | NO  | YES                     | YES                     | YES                 | YES               | NO                  | NO              | NO                | YES                                | NO    | YES             | YES             | 8                                      | NO                                   | YES               |
| 10236255                 | Initial           | 50.2                        | NO                         | NO                          | NO                                        | NO                                           | YES  | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53408                    | Initial           | 40.2                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53425                    | Initial           | 135.6                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | WINEP | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|-------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 10051333                 | Initial           | 46.2                        | NO                         | NO                          | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53494                    | Initial           | 6.4                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53442                    | Initial           | 78.3                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53491                    | Initial           | 110.6                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53946                    | Initial           | 145.0                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53405                    | Initial           | 91.6                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 54215                    | Initial           | 20.3                        | NO                         | NO                          | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | YES                                  | YES               |
| 53474                    | Initial           | 70.4                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 10579933                 | Initial           | 28.1                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53514                    | Initial           | 159.2                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | YES                                  | YES               |
| 10143959                 | Initial           | 12.3                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53445                    | Initial           | 8.2                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53116                    | Initial           | 2,855.1                     | YES                        | YES                         | NO                                        | NO                                           | NO   | YES | YES                     | NO                      | YES                 | YES               | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 6                                      | NO                                   | YES               |

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | WINEP | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|-------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 53471                    | Initial           | 17.6                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | YES                                | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53706                    | Initial           | 0.5                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53557                    | Initial           | 80.6                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53383                    | Initial           | 225.7                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53715                    | Initial           | 176.4                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53792                    | Initial           | 2.5                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53389                    | Initial           | 208.0                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 52702                    | Initial           | 55.0                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53529                    | Initial           | 1,619.4                     | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53088                    | Initial           | 12.0                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53397                    | Initial           | 183.9                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53472                    | Initial           | 90.5                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53526                    | Initial           | 67.6                        | NO                         | NO                          | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | YES                                  | YES               |

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | WINEP | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|-------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 10505968                 | Initial           | 22.3                        | NO                         | NO                          | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53492                    | Initial           | 710.8                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53400                    | Initial           | 79.2                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53128                    | Initial           | 0.5                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53947                    | Initial           | 0.5                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53521                    | Initial           | 622.4                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53538                    | Initial           | 198.6                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53515                    | Initial           | 136.7                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53507                    | Initial           | 141.6                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53564                    | Initial           | 136.7                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53384                    | Initial           | 317.9                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53787                    | Initial           | 0.5                         | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 10705636                 | Initial           | 25.7                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | WINEP | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|-------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 53796                    | Initial           | 1,148.4                     | YES                        | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | NO                                   | NO                |
| 53567                    | Initial           | 1,897.1                     | NO                         | YES                         | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 3                                      | NO                                   | YES               |
| 53661                    | Initial           | 22.0                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53479                    | Initial           | 141.0                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | YES               | NO                                 | NO    | NO              | YES             | 2                                      | NO                                   | YES               |
| 53427                    | Initial           | 13,039.<br>4                | YES                        | NO                          | NO                                        | NO                                           | NO   | NO  | YES                     | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | YES             | YES             | 3                                      | NO                                   | YES               |
| 53542                    | Initial           | 724.2                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 0                                      | NO                                   | NO                |
| 53493                    | Initial           | 116.9                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53413                    | Initial           | 602.4                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | YES                     | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 2                                      | NO                                   | YES               |
| 53854                    | Initial           | 195.4                       | NO                         | NO                          | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | YES                                  | YES               |
| 53407                    | Initial           | 14.0                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 54217                    | Initial           | 30.7                        | NO                         | NO                          | NO                                        | NO                                           | NO   | YES | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 1                                      | YES                                  | YES               |
| 53482                    | Initial           | 20.3                        | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | NO                  | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | NO              | 0                                      | NO                                   | NO                |
| 53436                    | Initial           | 522.7                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO    | NO              | YES             | 1                                      | YES                                  | YES               |

| Level 3 Equipment Number | C21st Pipe Metric | Total Population Equivalent | Catchment Characterisation | Bathing or shellfish waters | Discharge to Sensitive<br>Waters (Part A) | Discharge to Sensitive<br>Receiving (Part B) | SOAF | CAF | Internal Sewer Flooding | External Sewer Flooding | Pollution Incidents | WwTW Q Compliance | WwTW DWF Compliance | Storm Overflows | Other RMA Systems | Planned Residential<br>Development | <u>e</u> . | Sewer Collapses | Sewer Blockages | Number of Indicators<br>Breached (Excl | Single Indicator Breach is<br>Tier 1 | Proceed to BRAVA? |
|--------------------------|-------------------|-----------------------------|----------------------------|-----------------------------|-------------------------------------------|----------------------------------------------|------|-----|-------------------------|-------------------------|---------------------|-------------------|---------------------|-----------------|-------------------|------------------------------------|------------|-----------------|-----------------|----------------------------------------|--------------------------------------|-------------------|
| 53396                    | Initial           | 532.1                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO         | NO              | YES             | 1                                      | YES                                  | YES               |
| 53410                    | Initial           | 496.5                       | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO         | NO              | YES             | 1                                      | YES                                  | YES               |
| 53659                    | Initial           | 1,763.3                     | NO                         | NO                          | NO                                        | NO                                           | NO   | NO  | NO                      | NO                      | YES                 | NO                | NO                  | NO              | NO                | NO                                 | NO         | NO              | YES             | 1                                      | YES                                  | YES               |

| Score/Colour | Definition    |
|--------------|---------------|
| No           | No breach     |
| Yes - Tier 1 | Tier 1 breach |
| Yes - Tier 2 | Tier 2 breach |

Figure 12: RBCS scoring legend

### **Baseline Risk & Vulnerability Assessment (BRAVA)**

For those catchments that were captured by the RBCS as being 'at risk' South West Water then progressed them through to the BRAVA process.

Through the BRAVA process South West Water's understanding of the risks facing the catchments, and at what scale and complexity, has been improved. This included an assessment into how external changes in the future may impact upon South West Water's catchment vulnerabilities and how they may be impacted by risks such as Climate Change and Urban Creep. The outputs from this process are summarised below in Table 20. The planning objectives used for this exercise were:

- Internal Sewer Flooding Risk
- Pollution Risk
- Sewer Collapse Risk
- Risk of Sewer Flooding in a 1 in 50-year storm
- Storm Overflow performance
- Risk of WwTW Compliance Failure

| Group                    | Description                                                                | Value  |
|--------------------------|----------------------------------------------------------------------------|--------|
|                          | L2_Area                                                                    | Exe    |
| Physical Characteristics | Total Population Equivalent                                                | 302596 |
|                          | Baseline sewer length (km)                                                 | 3093   |
|                          | Planning Objective - Internal<br>Sewer Flooding Risk                       | 0      |
|                          | Planning Objective - Pollution<br>Risk                                     | 1      |
|                          | Planning Objective - Sewer<br>Collapse Risk                                | 0      |
| Baseline Score 2020      | Planning Objective - Risk of<br>Sewer Flooding in a 1 in 50-year<br>storm7 | 1      |
|                          | Planning Objective - Storm<br>Overflow performance8                        | 1      |
|                          | Planning Objective - Risk of<br>WwTW Compliance Failure9                   | 0      |
|                          |                                                                            | 2      |
|                          | Planning Objective - Storm                                                 | 1      |

## Table 20: BRAVA output summary table

| Group | Description            | Value |
|-------|------------------------|-------|
|       | Overflow performance11 |       |
|       |                        | 2     |

## Score/Colour Definition



## *Figure 13: BRAVA scoring legend*

BRAVA Risks were categorised from 0-2, with 0 being no significant risk identified, 1 for no immediate risk identified (although future risks may exist) and 2 showing that short- to medium-term risks of a significant nature having been recognised through the data analysis.

## **Bespoke Planning Objectives**

In addition to the six common planning objectives identified within the DWMP Framework, South West Water has included three bespoke planning objectives that are tailored to the South West Region.

### **Problem Characterisation**

Building on the outputs of the BRAVA process, South West Water examined the nature and complexity of the problems arising, how these relate to one another and what interventions could be put in place to mitigate them. The Problem Characterisation stage took the results from BRAVA and developed it further, providing insight into the risks around:

- Internal Sewer Flooding
- Pollution, dividing these between category 1 or category 2 & 3
- Sewer Collapse
- Sewer Flooding in a 1 in 50-year storm
- Sewer Flooding in a 1 in 10-year storm
- Storm Overflow performance
- WwTW Compliance Failure, including Dry Weather Flow scenarios

These ratings (shown in Table 21) were augmented with commentary (in Table 22) around how these risks have impacted the Exe catchment previously, with Flooding Heat Maps providing visual indicators of the scale of some of the potential problems within each catchment.

| TPU2                             | F1: Internal<br>sewer<br>flooding | F2: Risk of<br>sewer<br>flooding in a<br>1 in 10 year<br>event | F3: Risk of<br>sewer<br>flooding in a<br>1 in 50 year<br>event | P1: Pollution<br>incidents<br>(CAT 1-3) | P2: Severe<br>Pollutions<br>(Cat 1-2) | P3: Storm<br>overflow<br>performance | P4: WwTW<br>(NUMERIC)<br>compliance<br>failure | P5: WwTW<br>(DWF)<br>compliance<br>failure | A1: Sewer<br>collapse |
|----------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|
| BAMPTON_STW_BA<br>MPTON          | А                                 | F                                                              | F                                                              | А                                       | A                                     | G                                    | F                                              | F                                          | A                     |
| CULLOMPTON_STW_<br>CULLOMPTON    | A                                 | F                                                              | F                                                              | G                                       | А                                     | F                                    | F                                              | G                                          | А                     |
| WOODBURY_STW_W<br>OODBURY        | A                                 | F                                                              | G                                                              | А                                       | А                                     | F                                    | G                                              | А                                          | G                     |
| YEOFORD_STW_CRE<br>DITON         | А                                 | F                                                              | F                                                              | А                                       | А                                     | G                                    | В                                              | А                                          | A                     |
| CULMSTOCK_STW_C<br>ULMSTOCK      | А                                 | F                                                              | F                                                              | G                                       | А                                     | А                                    | А                                              | А                                          | А                     |
| WILLAND_STW_WILL<br>AND          | А                                 | В                                                              | F                                                              | А                                       | А                                     | F                                    | А                                              | A                                          | А                     |
| COUNTESS<br>WEAR_STW_EXETER      | A                                 | F                                                              | F                                                              | F                                       | A                                     | F                                    | С                                              | A                                          | А                     |
| LORDS<br>MEADOW_STW_CRE<br>DITON | F                                 | A                                                              | F                                                              | А                                       | A                                     | F                                    | A                                              | A                                          | A                     |
| BRUSHFORD_STW_B                  | G                                 | F                                                              | F                                                              | А                                       | A                                     | G                                    | А                                              | А                                          | А                     |

Table 21: Problem Characterisation

50 | Our DWMP Level 2 Plan Exe

| TPU2                                       | F1: Internal<br>sewer<br>flooding | F2: Risk of<br>sewer<br>flooding in a<br>1 in 10 year<br>event | F3: Risk of<br>sewer<br>flooding in a<br>1 in 50 year<br>event | P1: Pollution<br>incidents<br>(CAT 1-3) | P2: Severe<br>Pollutions<br>(Cat 1-2) | P3: Storm<br>overflow<br>performance | P4: WwTW<br>(NUMERIC)<br>compliance<br>failure | P5: WwTW<br>(DWF)<br>compliance<br>failure | A1: Sewer<br>collapse |
|--------------------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|
| RUSHFORD                                   |                                   |                                                                |                                                                |                                         |                                       |                                      |                                                |                                            |                       |
| TPU 75:<br>BRUSHFORD_STW_B<br>RUSHFORD     | G                                 | F                                                              | F                                                              | А                                       | А                                     | G                                    | A                                              | A                                          | A                     |
| BRADNINCH_STW_B<br>RADNINCH                | А                                 | G                                                              | G                                                              | А                                       | А                                     | G                                    | А                                              | А                                          | А                     |
| CHERITON<br>BISHOP_STW_CHERIT<br>ON BISHOP | А                                 | F                                                              | F                                                              | A                                       | А                                     | A                                    | А                                              | A                                          | А                     |
| DULFORD_STW_DUL<br>FORD                    | A                                 | F                                                              | F                                                              | A                                       | А                                     | А                                    | А                                              | А                                          | G                     |
| HEMYOCK_STW_HE<br>MYOCK                    | А                                 | F                                                              | F                                                              | A                                       | А                                     | А                                    | А                                              | А                                          | А                     |
| NEWTON ST<br>CYRES_STW_NEWTO<br>N ST CYRES | А                                 | F                                                              | F                                                              | А                                       | A                                     | A                                    | С                                              | A                                          | А                     |
| REWE_STW_REWE                              | А                                 | G                                                              | G                                                              | А                                       | А                                     | G                                    | А                                              | G                                          | А                     |
| WINSFORD_STW_WI<br>NSFORD                  | A                                 | F                                                              | F                                                              | А                                       | А                                     | А                                    | А                                              | A                                          | G                     |

| TPU2                          | F1: Internal<br>sewer<br>flooding | F2: Risk of<br>sewer<br>flooding in a<br>1 in 10 year<br>event | F3: Risk of<br>sewer<br>flooding in a<br>1 in 50 year<br>event | P1: Pollution<br>incidents<br>(CAT 1-3) | P2: Severe<br>Pollutions<br>(Cat 1-2) | P3: Storm<br>overflow<br>performance | P4: WwTW<br>(NUMERIC)<br>compliance<br>failure | P5: WwTW<br>(DWF)<br>compliance<br>failure | A1: Sewer<br>collapse |
|-------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|
| TPU 78: Cheriton<br>Fitzpaine | A                                 | С                                                              | С                                                              | А                                       | А                                     | A                                    | С                                              | А                                          | А                     |
| KERSWELL_STW_KER<br>SWELL     | A                                 | F                                                              | F                                                              | G                                       | А                                     | А                                    | А                                              | А                                          | А                     |
| MAER<br>LANE_STW_EXMOUT<br>H  | A                                 | G                                                              | G                                                              | F                                       | А                                     | F                                    | F                                              | A                                          | A                     |
| TIVERTON_STW_TIVE<br>RTON     | A                                 | G                                                              | G                                                              | F                                       | А                                     | F                                    | В                                              | А                                          | А                     |
| UFFCULME_STW_UF<br>FCULME     | F                                 | F                                                              | G                                                              | А                                       | А                                     | А                                    | F                                              | А                                          | F                     |
| TPU 3: Timaru                 | F                                 | F                                                              | G                                                              | G                                       | А                                     | F                                    | А                                              | A                                          | G                     |
| TPU 1: Kenn &<br>Kennford     | A                                 | G                                                              | G                                                              | A                                       | А                                     | G                                    | G                                              | А                                          | A                     |
| TPU 2: Kenton &<br>Starcross  | F                                 | G                                                              | G                                                              | A                                       | А                                     | A                                    | А                                              | А                                          | А                     |
| HALBERTON_STW_H<br>ALBERTON   | A                                 | F                                                              | F                                                              | А                                       | А                                     | F                                    | G                                              | A                                          | А                     |
| HOLCOMBE                      | А                                 | F                                                              | F                                                              | А                                       | А                                     | G                                    | А                                              | A                                          | А                     |

52 | Our DWMP Level 2 Plan Exe

| TPU2                                        | F1: Internal<br>sewer<br>flooding | F2: Risk of<br>sewer<br>flooding in a<br>1 in 10 year<br>event | F3: Risk of<br>sewer<br>flooding in a<br>1 in 50 year<br>event | P1: Pollution<br>incidents<br>(CAT 1-3) | P2: Severe<br>Pollutions<br>(Cat 1-2) | P3: Storm<br>overflow<br>performance | P4: WwTW<br>(NUMERIC)<br>compliance<br>failure | P5: WwTW<br>(DWF)<br>compliance<br>failure | A1: Sewer<br>collapse |
|---------------------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|
| ROGUS_STW_HOLCO<br>MBE ROGUS                |                                   |                                                                |                                                                |                                         |                                       |                                      |                                                |                                            |                       |
| MOSTERTON_SPS_M<br>osterton                 | A                                 | G                                                              | G                                                              | А                                       | A                                     | G                                    | А                                              | А                                          | А                     |
| SHILLINGFORD<br>ABBOTT_STW_SHILLI<br>NGFORD | A                                 | F                                                              | F                                                              | A                                       | A                                     | А                                    | А                                              | A                                          | A                     |
| THORVERTON_STW_<br>THORVERTON               | A                                 | F                                                              | F                                                              | A                                       | A                                     | А                                    | A                                              | А                                          | А                     |
| ALLER<br>GROVE_STW_WHIM<br>PLE              | А                                 | В                                                              | В                                                              | A                                       | A                                     | А                                    | А                                              | А                                          | А                     |
| ASHILL_STW_ASHILL                           | А                                 | А                                                              | А                                                              | А                                       | А                                     | А                                    | А                                              | А                                          | А                     |
| AYLESBEARE_STW_A<br>YLESBEARE               | A                                 | A                                                              | A                                                              | A                                       | A                                     | А                                    | А                                              | А                                          | A                     |
| BRAMPFORD<br>SPEKE_STW_BRAMPF<br>ORD SPEKE  | А                                 | А                                                              | A                                                              | G                                       | A                                     | А                                    | А                                              | А                                          | G                     |
| BURLESCOMBE_STW<br>_BURLESCOMBE             | A                                 | А                                                              | A                                                              | А                                       | A                                     | G                                    | G                                              | А                                          | А                     |

| TPU2                                    | F1: Internal<br>sewer<br>flooding | F2: Risk of<br>sewer<br>flooding in a<br>1 in 10 year<br>event | F3: Risk of<br>sewer<br>flooding in a<br>1 in 50 year<br>event | P1: Pollution<br>incidents<br>(CAT 1-3) | P2: Severe<br>Pollutions<br>(Cat 1-2) | P3: Storm<br>overflow<br>performance | P4: WwTW<br>(NUMERIC)<br>compliance<br>failure | P5: WwTW<br>(DWF)<br>compliance<br>failure | A1: Sewer<br>collapse |
|-----------------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|
| CLYST ST<br>LAWRENCE_STW_CU<br>LLOMPTON | A                                 | A                                                              | А                                                              | A                                       | A                                     | A                                    | А                                              | A                                          | A                     |
| DULVERTON_STW_D<br>ULVERTON             | А                                 | А                                                              | А                                                              | А                                       | А                                     | G                                    | F                                              | А                                          | А                     |
| DUNKESWELL_STW_<br>DUNKESWELL           | A                                 | A                                                              | A                                                              | А                                       | А                                     | А                                    | F                                              | А                                          | А                     |
| EXFORD_STW_EXFOR<br>D                   | A                                 | A                                                              | A                                                              | А                                       | А                                     | А                                    | А                                              | А                                          | G                     |
| MARSH<br>GREEN_STW_ROCKB<br>EARE        | A                                 | A                                                              | A                                                              | А                                       | A                                     | A                                    | A                                              | A                                          | А                     |
| PARK<br>CLOSE_STW_CLYST<br>HYDON        | A                                 | A                                                              | A                                                              | A                                       | A                                     | A                                    | A                                              | A                                          | A                     |
| PLYMTREE_STW_PLY<br>MTREE               | А                                 | A                                                              | А                                                              | А                                       | А                                     | F                                    | F                                              | А                                          | А                     |
| POUGHILL_STW_PO<br>UGHILL               | А                                 | А                                                              | А                                                              | А                                       | А                                     | А                                    | А                                              | А                                          | А                     |
| SAMPFORD                                | А                                 | А                                                              | A                                                              | А                                       | А                                     | F                                    | А                                              | A                                          | A                     |

| TPU2                                           | F1: Internal<br>sewer<br>flooding | F2: Risk of<br>sewer<br>flooding in a<br>1 in 10 year<br>event | F3: Risk of<br>sewer<br>flooding in a<br>1 in 50 year<br>event | P1: Pollution<br>incidents<br>(CAT 1-3) | P2: Severe<br>Pollutions<br>(Cat 1-2) | P3: Storm<br>overflow<br>performance | P4: WwTW<br>(NUMERIC)<br>compliance<br>failure | P5: WwTW<br>(DWF)<br>compliance<br>failure | A1: Sewer<br>collapse |
|------------------------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|---------------------------------------|--------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------|
| PEVERELL_STW_SAM<br>PFORD PEVEREL              |                                   |                                                                |                                                                |                                         |                                       |                                      |                                                |                                            |                       |
| SANDFORD_STW_SA<br>NDFORD                      | А                                 | В                                                              | В                                                              | А                                       | А                                     | А                                    | С                                              | А                                          | А                     |
| SHILLINGFORD ST<br>GEORGE_STW_SHILLI<br>NGFORD | А                                 | А                                                              | A                                                              | А                                       | A                                     | А                                    | А                                              | A                                          | А                     |
| SIDELING<br>CLOSE_STW_DUNCHI<br>DEOCK          | A                                 | A                                                              | A                                                              | A                                       | A                                     | A                                    | A                                              | A                                          | A                     |
| SILVERTON_STW_SIL<br>VERTON                    | А                                 | А                                                              | A                                                              | А                                       | А                                     | A                                    | А                                              | А                                          | A                     |
| UPLOWMAN_STW_TI<br>VERTON                      | А                                 | А                                                              | A                                                              | А                                       | A                                     | F                                    | А                                              | A                                          | A                     |
| WHITEWAYS_STW_H<br>ELE                         | А                                 | В                                                              | В                                                              | А                                       | А                                     | А                                    | А                                              | А                                          | А                     |

| RISK PATTERN | Assessment                     |
|--------------|--------------------------------|
| А            | No risks – system is resilient |
| В            | Long term moderate risk        |
| С            | Long term high risk            |
| D            | Medium term moderate risk      |
| E            | Medium term high risk          |
| F            | Immediate moderate risk        |
| G            | Immediate high risk            |

# Figure 14: Problem Characterisation legend

## Table 22: Problem Characterisation Description

| TPU                            | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                | Future Flood Risk                                                         | Overflows                                                                                                                 | WwTW                                                                                                                                                                   |
|--------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALLER<br>GROVE_STW_WHIM<br>PLE | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                           | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| ASHILL_STW_ASHILL              | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Not<br>classified - 100%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |

| ТРО                           | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                           | Future Flood Risk                                                         | Overflows                                                                                                                                                       | WwTW                                                                                                                                                                   |
|-------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AYLESBEARE_STW_A<br>YLESBEARE | This catchment is<br>performing well and<br>is resilient for the<br>future.                    | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                                                                                            | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Not<br>classified - 100%.                                       | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| BAMPTON_STW_BA<br>MPTON       | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 2 external<br>flooding hotspots<br>attributed to other<br>causes in the<br>catchment, located<br>near; top of Frog<br>Street and School<br>Close.                                                                                    | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (High) -<br>33%; Not classified -<br>67%. | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.         |
| BRADNINCH_STW_B<br>RADNINCH   | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 external<br>flooding hotspot<br>attributed to<br>hydraulic overload in<br>the catchment,<br>located near;<br>Kensham Farm.<br>There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Sub-<br>standard (High) -<br>100%.                              | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |

| TPU                                        | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                          | Future Flood Risk                                                         | Overflows                                                                                                                          | WwTW                                                                                                                                                                   |
|--------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                | near; Hornbeam<br>Gardens.                                                                                                                                                                                                                                                                    |                                                                           |                                                                                                                                    |                                                                                                                                                                        |
| BRAMPFORD<br>SPEKE_STW_BRAMPF<br>ORD SPEKE | This catchment is<br>performing well and<br>is resilient for the<br>future.                    | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                                                                                                                                           | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                                    | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| BRUSHFORD_STW_B<br>RUSHFORD                | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 3 total<br>internal flooding<br>incidents in the<br>catchment; this is<br>1.91% of the total<br>number of properties<br>within the<br>catchment. There is 1<br>external flooding<br>hotspot attributed to<br>other causes in the<br>catchment, located<br>near; Ellersdown<br>Lane. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Sub-<br>standard (High) -<br>100%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| BURLESCOMBE_STW<br>_BURLESCOMBE            | This catchment is<br>changing & requires<br>a long-term strategy.                              | There were no<br>substantial flooding<br>or pollution hotspots                                                                                                                                                                                                                                | A non modelled<br>approach was used<br>to determine future                | There are a total of 2<br>overflows in the<br>catchment. They<br>have been classified                                              | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need                                                                                  |

| TPU                                        | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                             | Future Flood Risk                                                                        | Overflows                                                                                                                      | WwTW                                                                                                                                                                   |
|--------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                | in the catchment.                                                                                                                                                                                                                                                | flood risk.                                                                              | as follows: Sub-<br>standard (High) -<br>50%; Not classified -<br>50%.                                                         | to increase capacity<br>as part of a<br>short/medium term<br>strategy.                                                                                                 |
| CHERITON<br>BISHOP_STW_CHERIT<br>ON BISHOP | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 external<br>flooding hotspot<br>attributed to<br>hydraulic overload in<br>the catchment,<br>located near; Church<br>Lane. There is 1<br>external flooding<br>hotspot attributed to<br>other causes in the<br>catchment, located<br>near; Church Lane. | A non modelled<br>approach was used<br>to determine future<br>flood risk.                | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Not<br>classified - 100%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| CLYST ST<br>LAWRENCE_STW_CU<br>LLOMPTON    | This catchment is<br>performing well and<br>is resilient for the<br>future.                    | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                                                                                                              | A non modelled<br>approach was used<br>to determine future<br>flood risk.                | There are no<br>overflows in this<br>catchment.                                                                                | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| COUNTESS<br>WEAR_STW_EXETER                | This catchment<br>requires additional<br>investment to make<br>it resilient for the            | There are 3 pollution<br>hotspots in the<br>catchment, located<br>near; Countess Wear                                                                                                                                                                            | 4.9% of the total<br>number of properties<br>within the catchment<br>are predicted to be | There are a total of<br>71 overflows in the<br>catchment. They<br>have been classified                                         | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need                                                                                  |

| TPU                           | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Future Flood Risk                                                                                                                                                                              | Overflows                                                                                                                                                                                                                                                      | WwTW                                                                                                          |
|-------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                               | future.                                                                                        | STW (Id:171),<br>Greendale,<br>Woodbury Salterton<br>(Id:31) & Northbrook<br>Golf Course CSO<br>(Id:114). There is 1<br>external flooding<br>hotspot attributed to<br>hydraulic overload in<br>the catchment,<br>located near; Clyst St<br>Mary. There are 7<br>external flooding<br>hotspots attributed<br>to other causes in<br>the catchment,<br>located near; Marsh<br>Barton, St Loyes,<br>Whipton,<br>Okehampton Road St<br>Thomas, Redhills,<br>London Road<br>Cranbrook and<br>Beacon Lane. | at risk of sewer<br>flooding. There are 5<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near; St<br>Thomas, Exeter<br>Quay, St James,<br>Heavitree and St<br>Loyes. | as follows:<br>Satisfactory - 20%;<br>Sub-standard<br>(Medium) - 65%;<br>Sub-standard (High) -<br>11%; Unsatisfactory -<br>1%; Not classified -<br>3%. Overflows in this<br>catchment impact on<br>the following bathing<br>beaches/shell fish<br>waters; EXE. | to increase capacity<br>as part of a<br>medium/long term<br>strategy.                                         |
| CULLOMPTON_STW_<br>CULLOMPTON | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 2 external<br>flooding hotspots<br>attributed to other<br>causes in the<br>catchment, located                                                                                                                                                                                                                                                                                                                                                                                             | 3.5% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer                                                                                   | There are a total of 5<br>overflows in the<br>catchment. They<br>have been classified<br>as follows:                                                                                                                                                           | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity |

| ТРО                         | Conclusion Narrative                                              | Historical Pollution<br>and Flooding                                                                                               | Future Flood Risk                                                                                                                                        | Overflows                                                                                                                      | WwTW                                                                                                                                                                   |
|-----------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                                                                   | near; bottom end of<br>Exeter Road and<br>Knightwood SPS.                                                                          | flooding. There are 2<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near; Exeter<br>Hill and Higher Street<br>/ Station Road. | Satisfactory - 20%;<br>Sub-standard<br>(Medium) - 40%;<br>Sub-standard (High) -<br>20%; Not classified -<br>20%.               | as part of a<br>medium/long term<br>strategy.                                                                                                                          |
| CULMSTOCK_STW_C<br>ULMSTOCK | This catchment is<br>changing & requires<br>a long-term strategy. | There are 2 pollution<br>hotspots in the<br>catchment, located<br>near; Bridge House<br>(Id:107) and<br>Culmstock STW<br>(Id:179). | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Not<br>classified - 100%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| DULFORD_STW_DUL<br>FORD     | This catchment is<br>changing & requires<br>a long-term strategy. | There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located<br>near; Off A373.           | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Not<br>classified - 100%.      | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| DULVERTON_STW_D<br>ULVERTON | This catchment is<br>changing & requires<br>a long-term strategy. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-                      | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity                                                          |

| TPU                           | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                | Future Flood Risk                                                         | Overflows                                                                                                                                                         | WwTW                                                                                                                                                                   |
|-------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                             |                                                                                     |                                                                           | standard (High) -<br>33%; Unsatisfactory -<br>67%.                                                                                                                | as part of a<br>medium/long term<br>strategy.                                                                                                                          |
| DUNKESWELL_STW_<br>DUNKESWELL | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>67%; Not classified -<br>33%. | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.         |
| EXFORD_STW_EXFOR<br>D         | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                                                                   | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| HALBERTON_STW_H<br>ALBERTON   | This catchment is<br>changing & requires<br>a long-term strategy.           | There were no<br>substantial flooding<br>hotspots in the<br>cacthment.              | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Sub-<br>standard (High) -<br>100%.                                | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>short/medium term<br>strategy.        |

| TPU                                      | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                  | Future Flood Risk                                                         | Overflows                                                                                                                                                       | WwTW                                                                                                                                                                   |
|------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HEMYOCK_STW_HE<br>MYOCK                  | This catchment is<br>changing & requires<br>a long-term strategy.                              | There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located<br>near; Longmead.                                                                                                                                              | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 2<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Not<br>classified - 100%.                                  | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| HOLCOMBE<br>ROGUS_STW_HOLCO<br>MBE ROGUS | This catchment is<br>changing & requires<br>a long-term strategy.                              | There were no<br>substantial flooding<br>hotspots in the<br>cacthment.                                                                                                                                                                                                | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (High) -<br>67%; Not classified -<br>33%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| KERSWELL_STW_KER<br>SWELL                | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 pollution<br>hotspot in the<br>catchment, located<br>near; Kerswell SPST<br>(Id:53). There is 1<br>external flooding<br>hotspot attributed to<br>hydraulic overload in<br>the catchment,<br>located near; Off<br>Catkins. There are 2<br>external flooding | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                                                                 | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |

| TPU                              | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                                                               | Future Flood Risk                                                                                                                                                                                                                                                                                          | Overflows                                                                                                                                                          | WwTW                                                                                                                                                                   |
|----------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                | hotspots attributed<br>to other causes in<br>the catchment,<br>located near; Off<br>Catkins.                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                    |                                                                                                                                                                        |
| LORDS<br>MEADOW_STW_CRE<br>DITON | This catchment is<br>changing & requires<br>a long-term strategy.                              | There are 3 total<br>internal flooding<br>incidents in the<br>catchment; this is<br>0.07% of the total<br>number of properties<br>within the<br>catchment. There are<br>3 external flooding<br>hotspots attributed<br>to other causes in<br>the catchment,<br>located near;<br>Shobrooke, On A377<br>and Queen Elizabeth<br>Drive. | 2.3% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer<br>flooding. There are 3<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near;<br>Charlotte Street /<br>A3072, Jockey Hill /<br>Blagdon Terrace, and<br>High Street. | There are a total of<br>19 overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>42%; Not classified -<br>58%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| MAER<br>LANE_STW_EXMOUT<br>H     | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 pollution<br>hotspot in the<br>catchment, located<br>near; Sandy Bay SPS<br>(Id:8). There are 2<br>external flooding<br>hotspots attributed                                                                                                                                                                             | 12.6% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer<br>flooding. There are 5<br>predicted future                                                                                                                                                 | There are a total of<br>20 overflows in the<br>catchment. They<br>have been classified<br>as follows:<br>Satisfactory - 30%,<br>Sub-standard                       | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term                      |

| TPU                              | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                                                                       | Future Flood Risk                                                                                                                                                                                          | Overflows                                                                                                                                                                                                                                                              | WwTW                                                                                                                                                                   |
|----------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                             | to hydraulic overload<br>in the catchment,<br>located near;<br>Springfield Road and<br>Exmouth Community<br>College. There are 4<br>external flooding<br>hotspots attributed<br>to other causes in<br>the catchment,<br>located near;<br>Deepway SPS, Queen<br>Street / Beacon<br>Place, Cranford<br>Avenue and<br>Midway/Nelson<br>Drive. | flooding hotspots in<br>the catchment,<br>located near; Hartop<br>Road SPS, Queen<br>Street / Beacon<br>Place, Magnolia<br>Avenue / The<br>Crescent / The<br>Broadway, Hulham<br>and Rock Mansions<br>SPS. | (Medium) - 35%;<br>Sub-standard (High) -<br>20%; Not classified -<br>15%. Overflows in<br>this catchment<br>impact on the<br>following bathing<br>beaches/shell fish<br>waters; BUDLEIGH<br>SALTERTON BEACH,<br>EXMOUTH BEACH,<br>BUDLEIGH<br>SALTERTON BEACH,<br>EXE. | strategy.                                                                                                                                                              |
| MARSH<br>GREEN_STW_ROCKB<br>EARE | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                                                                                                                                                                                        | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                                                                  | There are no<br>overflows in this<br>catchment.                                                                                                                                                                                                                        | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| MOSTERTON_SPS_M<br>osterton      | This catchment<br>requires additional<br>investment to make                 | There were no<br>substantial flooding<br>hotspots in the                                                                                                                                                                                                                                                                                   | A non modelled<br>approach was used<br>to determine future                                                                                                                                                 | There are no<br>overflows in this<br>catchment.                                                                                                                                                                                                                        | There is no sewage<br>treatment works in<br>the catchment.                                                                                                             |

| TPU                                        | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                                                                        | Future Flood Risk                                                         | Overflows                                                                                                                                                                                       | WwTW                                                                                                                                                                   |
|--------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | it resilient for the future.                                                | cacthment.                                                                                                                                  | flood risk.                                                               |                                                                                                                                                                                                 |                                                                                                                                                                        |
| NEWTON ST<br>CYRES_STW_NEWTO<br>N ST CYRES | This catchment is<br>changing & requires<br>a long-term strategy.           | There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located<br>near; West Town<br>Road/Woodlands. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Not<br>classified - 100%.                                                                  | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.         |
| PARK<br>CLOSE_STW_CLYST<br>HYDON           | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                         | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                                                                                                 | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| PLYMTREE_STW_PLY<br>MTREE                  | This catchment is<br>changing & requires<br>a long-term strategy.           | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                         | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>33%; Sub-standard<br>(High) - 33%; Not<br>classified - 33%. | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.         |

| ТРО                                           | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                                                                 | Future Flood Risk                                                         | Overflows                                                                                                                                                              | WwTW                                                                                                                                                                   |
|-----------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| POUGHILL_STW_PO<br>UGHILL                     | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                  | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                                                                        | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| REWE_STW_REWE                                 | This catchment is<br>changing & requires<br>a long-term strategy.           | There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located<br>near; Chestnut<br>Crescent. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 2<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (High) -<br>50%; Not classified -<br>50%.        | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>short/medium term<br>strategy.        |
| SAMPFORD<br>PEVERELL_STW_SAM<br>PFORD PEVEREL | This catchment is<br>changing & requires<br>a long-term strategy.           | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                  | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>67%; Sub-standard<br>(High) - 33%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| SANDFORD_STW_SA<br>NDFORD                     | This catchment is<br>changing & requires<br>a long-term strategy.           | There were no<br>substantial flooding<br>or pollution hotspots                                                                       | A non modelled<br>approach was used<br>to determine future                | There are a total of 2<br>overflows in the<br>catchment. They                                                                                                          | We are monitoring<br>performance at the<br>treatment works and                                                                                                         |

| TPU                                            | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                | Future Flood Risk                                                         | Overflows                                                                                                                 | WwTW                                                                                                                                                                   |
|------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                             | in the catchment.                                                                   | flood risk.                                                               | have been classified<br>as follows: Sub-<br>standard (Medium) -<br>50%; Not classified -<br>50%.                          | there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.                                                                           |
| SHILLINGFORD<br>ABBOTT_STW_SHILLI<br>NGFORD    | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>hotspots in the<br>cacthment.              | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Not<br>classified - 100%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| SHILLINGFORD ST<br>GEORGE_STW_SHILLI<br>NGFORD | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Not<br>classified - 100%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| SIDELING<br>CLOSE_STW_DUNCHI<br>DEOCK          | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment. | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in this<br>catchment.                                                                           | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between                  |

| TPU                           | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                       | Future Flood Risk                                                                                                                                                                                                                                | Overflows                                                                                                                                                                                                                                | WwTW                                                                                                                                                                   |
|-------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                                |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                          | now and 2050.                                                                                                                                                          |
| SILVERTON_STW_SIL<br>VERTON   | This catchment is<br>performing well and<br>is resilient for the<br>future.                    | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                                                                                        | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                                                                                                        | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>67%; Not classified -<br>33%.                                                                        | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| THORVERTON_STW_<br>THORVERTON | This catchment is<br>changing & requires<br>a long-term strategy.                              | There were no<br>substantial flooding<br>hotspots in the<br>cacthment.                                                                                                                                                                     | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                                                                                                        | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>100%                                                                                                 | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| TIVERTON_STW_TIVE<br>RTON     | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 pollution<br>hotspot in the<br>catchment, located<br>near; Tiverton STW<br>(Id:170). There is 1<br>external flooding<br>hotspot attributed to<br>hydraulic overload in<br>the catchment,<br>located near; St<br>Andrews Street. | 14.5% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer<br>flooding. There are 2<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near; King<br>Street / St Paul's | There are a total of<br>15 overflows in the<br>catchment. They<br>have been classified<br>as follows:<br>Satisfactory - 7%;<br>Sub-standard<br>(Medium) - 47%;<br>Sub-standard (High) -<br>7%; Unsatisfactory -<br>13%; Not classified - | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.         |

| TPU                       | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                                                                                                             | Future Flood Risk                                                                                                                                                                                                                                                                                          | Overflows                                                                                                                                                              | WwTW                                                                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                | There are 7 external<br>flooding hotspots<br>attributed to other<br>causes in the<br>catchment, located<br>near; St Andrews<br>Street, Wellbrook<br>Street, Roundhill,<br>Palmerston Park,<br>Westfield Road SPS,<br>Blundells Road and<br>Lime Kiln Road.                                                                                                                       | Church and<br>Queensway.                                                                                                                                                                                                                                                                                   | 27%.                                                                                                                                                                   |                                                                                                                                                                |
| UFFCULME_STW_UF<br>FCULME | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 total<br>internal flooding<br>incidents in the<br>catchment; this is<br>0.09% of the total<br>number of properties<br>within the<br>catchment. There is 1<br>external flooding<br>hotspot attributed to<br>hydraulic overload in<br>the catchment,<br>located near; Bridge<br>Street. There is 1<br>external flooding<br>hotspot attributed to<br>other causes in the | 6.4% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer<br>flooding. There are 4<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near; Culm<br>Haven, Markers<br>Road, Bridge Street<br>and Kitwell Street /<br>Mill Street. | There are a total of 2<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (Medium) -<br>50%; Sub-standard<br>(High) - 50%. | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy. |

| TPU                       | Conclusion Narrative                                                        | Historical Pollution<br>and Flooding                                                                                                                                       | Future Flood Risk                                                                                                                                                                                                           | Overflows                                                                                                                                                      | WwTW                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                             | catchment, located<br>near; Bridge Street.                                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                                                |                                                                                                                                                                        |
| UPLOWMAN_STW_TI<br>VERTON | This catchment is<br>changing & requires<br>a long-term strategy.           | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                        | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                                                                                   | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Sub-<br>standard (High) -<br>100%.                             | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| WHITEWAYS_STW_H<br>ELE    | This catchment is<br>performing well and<br>is resilient for the<br>future. | There were no<br>substantial flooding<br>or pollution hotspots<br>in the catchment.                                                                                        | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                                                                                   | There are no<br>overflows in this<br>catchment.                                                                                                                | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| WILLAND_STW_WILL<br>AND   | This catchment is<br>changing & requires<br>a long-term strategy.           | There are 3 external<br>flooding hotspots<br>attributed to other<br>causes in the<br>catchment, located<br>near; South View<br>Road, Fir Close and<br>Willand Old Village. | 2.6% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer<br>flooding. There are 3<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near; Silver | There are a total of 4<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (High)-<br>50%; Not classified -<br>50%. | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |

| TPU                       | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                        | Future Flood Risk                                                                                                                                                                                                                                                                                                          | Overflows                                                                                                                                                                                                                                         | WwTW                                                                                                                                                                   |
|---------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                |                                                                                                                                             | Street / Plum Way,<br>Park Street and<br>Jubilee Fields /<br>Somerlea.                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   |                                                                                                                                                                        |
| WINSFORD_STW_WI<br>NSFORD | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located<br>near; Exford Road.                 | A non modelled<br>approach was used<br>to determine future<br>flood risk.                                                                                                                                                                                                                                                  | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Not<br>classified - 100%.                                                                                                                         | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| WOODBURY_STW_W<br>OODBURY | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 2 external<br>flooding hotspots<br>attributed to other<br>causes in the<br>catchment, located<br>near; Broadway and<br>Town Lane. | 8.4% of the total<br>number of properties<br>within the catchment<br>are predicted to be<br>at risk of sewer<br>flooding. There are 5<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near;<br>Parsonage Way,<br>Castle Lane, Flower<br>Street, Church Stile<br>Lane / Broadmead<br>and Broadway. | There are a total of 2<br>overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (High)-<br>100%. Overflows in<br>this catchment<br>impact on the<br>following bathing<br>beaches/shell fish<br>waters; EXE. | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>short/medium term<br>strategy.        |
| YEOFORD_STW_CRE           | This catchment is                                                                              | There are 2 external                                                                                                                        | A non modelled                                                                                                                                                                                                                                                                                                             | There are a total of 2                                                                                                                                                                                                                            | We are monitoring                                                                                                                                                      |

72 | Our DWMP Level 2 Plan Exe

| TPU                                     | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                        | Future Flood Risk                                                                                                                                                                                                                              | Overflows                                                                                                                                                                  | WwTW                                                                                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DITON                                   | changing & requires<br>a long-term strategy.                                                   | flooding hotspots<br>attributed to other<br>causes in the<br>catchment, located<br>near; Colebrooke and<br>Sunnymead.                                                                       | approach was used<br>to determine future<br>flood risk.                                                                                                                                                                                        | overflows in the<br>catchment. They<br>have been classified<br>as follows: Sub-<br>standard (High) -<br>50%; Not classified -<br>50%.                                      | performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>medium/long term<br>strategy.                              |
| KENN &<br>KENNFORD_STW_EX<br>ETER       | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 2 external<br>flooding hotspost<br>attributed to other<br>causes in catchment,<br>located near;<br>Exeter Road,<br>Kennford.<br>Mount rise, Kenn                                  | 9% of the total<br>number of properties<br>within the catchment<br>that are predicted to<br>be at risk of sewer<br>flooding.<br>There is 1 predicted<br>future flooding<br>hotspot in the<br>catchment, located<br>on Exeter Road,<br>Kennford | There is 1 overflow in<br>the catchment. This<br>has been classified<br>as follows;<br>Substandard (high)                                                                  | We are monitoring<br>performance at the<br>treatment works and<br>there may be a need<br>to increase capacity<br>as part of a<br>short/medium term<br>strategy         |
| KENTON &<br>STARCROSS_STW_ST<br>ARCROSS | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There is 1 internal<br>flooding incident in<br>the catchment, this is<br>0.08 % of the total<br>number of properties<br>within the<br>catchment.<br>There is 1 external<br>flooding hotspot | 20% of the total<br>number of properties<br>within the catchment<br>that are predicted to<br>be at risk of sewer<br>flooding.<br>There are 3 predicted<br>future flooding<br>hotspots in the                                                   | There are a total of 3<br>overflows in the<br>catchment. They<br>have been classified<br>as follows;<br>Satisfactory - 1<br>Substandard (high) -<br>2<br>Overflows in this | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |

| TPU                    | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                                                                                                     | Future Flood Risk                                                                                                                                                                                                                                                                                                               | Overflows                                                                                                                                                                                                                                                                                                                               | WwTW                                                                                                                                                                   |
|------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                | attributed to<br>hydalulic overload in<br>the catchment,<br>located on;<br>Exeter Road, Kenton<br>There are 2 external<br>flooding hotspots<br>attributed to other<br>causes in catchment,<br>located near;<br>Heywood Drive                                                                                                                                             | catchment, located<br>near;<br>Mamhead Road SPS<br>Bonhay Road SPS<br>Generals Lane SPSt                                                                                                                                                                                                                                        | catchment impact on<br>the following<br>shellfish waters;<br>Exe                                                                                                                                                                                                                                                                        |                                                                                                                                                                        |
| TIMARU_STW_DAWL<br>ISH | This catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 16 total<br>internal flooding<br>incidents in the<br>catchment, this is<br>0.19% of the total<br>number of properties<br>within the<br>catchment.<br>There are 2 external<br>flooding hotspots<br>attributed to<br>hydalulic overload in<br>the catchment,<br>located near;<br>Sandy Lane SPS<br>Marina Shops SPS<br>There are 5 external<br>flooding hotspots | 12% of the total<br>number of properties<br>within the catchment<br>that are predicted to<br>be at risk of sewer<br>flooding.<br>There are 11<br>predicted future<br>flooding hotspots in<br>the catchment,<br>located near;<br>Dawlish Warren (3)<br>Dawlish town (5)<br>Oaklands<br>Smugglers Lane SPS<br>Broad Leaf Park SPS | There are a total of<br>22 overflows in the<br>catchment. They<br>have been classified<br>as follows;<br>Satisfactory - 8<br>Substandard<br>(medium) - 8<br>Substandard (high) -<br>5<br>Overflows in this<br>catchment impact on<br>the following bathing<br>beaches/shellfish<br>waters;<br>Dawlish (Town)<br>Teigmouth<br>(Holcombe) | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |

| TPU                                    | Conclusion Narrative                                                                           | Historical Pollution<br>and Flooding                                                                                                                                                                                                                                                      | Future Flood Risk                                                         | Overflows                                                                                            | WwTW                                                                                                                                                                   |
|----------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        |                                                                                                | attributed to other<br>causes in catchment,<br>located near;<br>Dawlish Town (2)<br>Smugglers Lane SPS,<br>Ladys Mile SPS<br>Broad Leaf Park SPS<br>There are 2 pollution<br>hotspots in the<br>catchment, located<br>near;<br>Cockwood CSO (ID<br>78)<br>Shutterton Bridge<br>SPS (ID 4) |                                                                           | Exe                                                                                                  |                                                                                                                                                                        |
| CHERITON<br>FITZPAINE_STW_CRE<br>DITON | Your catchment is<br>changing & requires<br>a long-term strategy.                              | There is 1 external<br>flooding hotspot<br>attributed to other<br>causes in the<br>catchment, located<br>near Cherry Meadow<br>and Cherry Close                                                                                                                                           | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There are no<br>overflows in the<br>catchment.                                                       | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance<br>issues due to lack of<br>capacity between<br>now and 2050. |
| BRUSHFORD_STW_B<br>RUSHFORD            | Your catchment<br>requires additional<br>investment to make<br>it resilient for the<br>future. | There are 3 total<br>internal flooding<br>incidents in the<br>catchment; this is<br>1.91% of the total                                                                                                                                                                                    | A non modelled<br>approach was used<br>to determine future<br>flood risk. | There is a total of 1<br>overflow in the<br>catchment. It has<br>been classified as<br>follows: Sub- | We are monitoring<br>performance at the<br>treatment works and<br>we are not expecting<br>any compliance                                                               |

| TPU | Conclusion Narrative | Historical Pollution<br>and Flooding                                                                                                                                                | Future Flood Risk | Overflows                  | WwTW                                                       |
|-----|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|------------------------------------------------------------|
|     |                      | number of properties<br>within the<br>catchment. There is 1<br>external flooding<br>hotspot attributed to<br>other causes in the<br>catchment, located<br>near; Ellersdown<br>Lane. |                   | standard (High) -<br>100%. | issues due to lack of<br>capacity between<br>now and 2050. |

## **Resilience Assessment**

Resilience is a statutory duty for Ofwat under the 2014 Water Industry Act, but more importantly for us it is the philosophy that allows us to consider how we best manage our services to customers in a changing and sometime challenging environment. Such challenges encompass a wide range of factors such as extreme weather conditions; drought and flooding; land use and catchment pressures; power supply and communications reliability; skills and organisational capacity; supply chain capability; as well as changing environmental and public health challenges to meet the needs of consumers now as well as in the longer term. The details below form part of the Operational Resilience assessment within the DWMP. Namely:

- Coastal Flood Inundation
- Coastal Erosion
- Fluvial Flooding (Response and Recovery Plans)
- Power Outage
- Operational Telemetry (OT)

## **Coastal flooding and Erosion**

UK coastal flood and erosion risk is expected to increase over the 21st century due to the impact in sea level rise and climate change. Which means that we can expect to see both an increase in the frequency and magnitude of extreme water levels and weather events around the UK coastline. This is particularly significant for the SW region due to the extensive coastline and numerous coastal communities who rely on the safe and constant provision of clean and wastewater services. The South West's tourism economy is also dependent, to a large extent, on the extensive coastline, acknowledged by EA through improvements to coastal waters over decades of investment under the Bathing Water drivers. As a consequence, an assessment of the risks associated with present day and future projected coastal flood and erosion risk was undertaken utilising the latest available science.

## **Coastal Flooding**

Coastal flood risk was modelled for three climate scenarios, the first representing presentday risk in 2022 and second, the future climate change scenarios (RCP2.5 and RCP8.6) representing the projected risk in 2035 and 2050. To fully assess future risk for each of the above climate change scenarios four return events were evaluated, these were:

- Highest Astronomical Tide (HAT) event represents the maximum observed tide under average atmospheric conditions
- 1 in 5-year storm return period event a high probability event with a 20% chance of happening in any one year
- 1 in 50-year storm return period event a moderate probability event with a 2% chance of occurring in any one year
- 1 in 200-year storm return period event a low probability event with a 0.5% chance of occurring in any one year The EA Coastal Flood Boundary data for the assessment of extreme sea level rise was also used

A total of 653<sup>1</sup> Sewage Treatment Works (STW), 1235 Sewage Pumping Stations (SPS) plus the associated wastewater infrastructure were assessed for coastal flood risk. Sites have been assessed based upon a number of different storm and flood scenarios considering the risks to the site, the defence of the site and wider EA flood defence work. The 1 in 200-year flood extent for the three time periods is indicated in Figure 15 below.

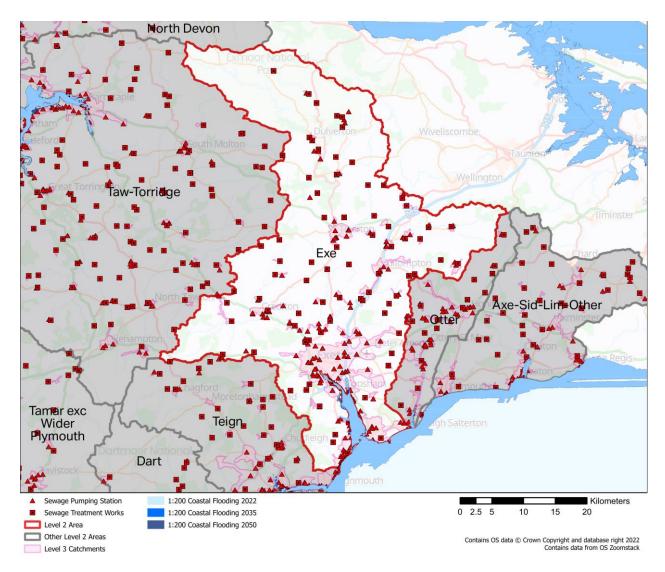



Figure 15: Extent of coastal flooding

Possible interventions to manage the risks have been identified as the provision of flood defences for the site, either as a SWW deliverable or as part of a wider programme of coastal defences working with EA and other RMAs. Thereby delivering greater benefit for coastal communities. An alternative intervention is to relocate the asset to a more secure location ensuring ability to continue to service local communities. This option is more likely to be part of a wider decision to relocate communities at risk and would be taken in close

<sup>&</sup>lt;sup>1</sup> Catchments are being continually reviewed as part of other workstreams and may be subject to change, Power Outage and OT defined in 'Our Regional Plan'

collaboration with the EA and responsible RMAs. The sewer infrastructure identified at risk is associated with the hydrodynamic modelling outputs. This provides additional assurance for the network assessed as being at risk.

## **Coastal Erosion**

A hazard assessment of coastal erosion susceptibility was undertaken with the aim of better understanding the risk posed to SWW assets and provide information whereby asset investment can be effectively prioritised allowing for a more targeted approach for future allocation of operational and capital expenditure. A detailed assessment of coastal erosion risk was assessed for all of our operational wastewater sites (653 STW's and co-located Sludge Treatment Centre [STC], 1235 SPS's plus associated infrastructure). All sites were only at risk from erosion and not from coastal flooding. The assessment combines two approaches:

- A high-level screening to identify sites at coastal erosion risk by 2118
- A detailed site-by-site erosion analysis for the three epochs: 2022, 2035, and 2050

The high-level coastal erosion risk assessment is based on the NCERM (National Coastal Erosion Risk Mapping) dataset. The erosion risk was calculated based on the distance of the asset from the projected cliff edge with a geological scaling factor applied based on the erodibility of the underlying geology. Each site identified at risk had detailed erosion analysis undertaken. This included site-specific conditions that influence the rate of coastal erosion, such as geology, for the three time frames 2022, 2035, and 2050. This produced a ranked output highlighting assets at greatest risk of coastal erosion. The extent of coastal erosion in 2035 and 2050 is indicated in Figure 16 below.

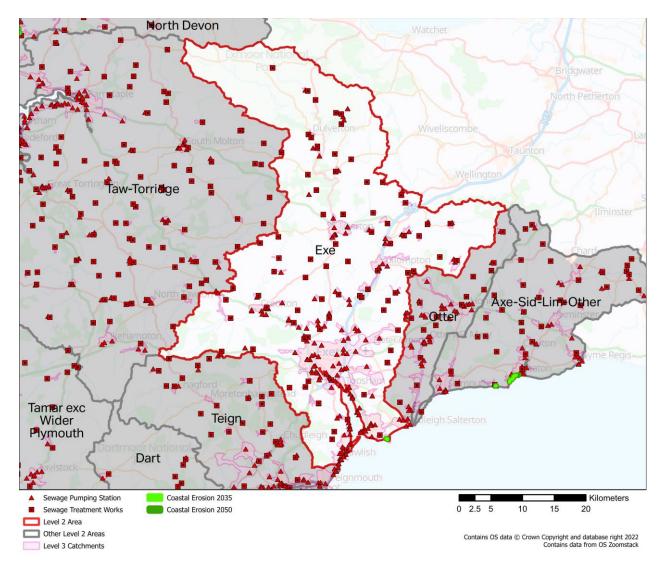



Figure 16: Extent of coastal erosion in 2035 and 2050

The EA have been allocated £2.5m capital funding to work with partners to deliver an update to the NCERM, across England by the end of 2023. The update to NCERM complements the dependent project to refresh the 20 Shoreline Management Plans (SMPs) across England, and other similar EA/DEFRA projects seeking to update flood and coastal erosion risk mapping, modelling and assessment. Combined, all of this activity will provide an essential body of data and evidence to underpin future adaptation and planning investment decisions of relevant coastal RMAs. This being the case the current strategy is to continue to evaluate the risks through AMP8 following the publication of the revised NCERM, working alongside other external agencies and key stakeholders including the relevant coastal risk management authorities to determine the level of risk, relevant SMP policy and therefore any subsequent required investment to mitigate coastal erosion impact.

## **Fluvial and Pluvial Flooding**

UK fluvial flood risk is expected to increase over the 21st century which means that we can expect to see both an increase in the frequency and magnitude of extreme water levels around the UK. As a consequence, an assessment of the risks associated with future fluvial

flooding due to projected climate change has been evaluated using the latest available science, UKCP18. The UKCP (United Kingdom Climate Projections) is a suite of climate models developed by the UK Met Office (Meteorological Office) and the Centre for Ecology & Hydrology to provide projections of future climate change in the United Kingdom. The UKCP models use data from global climate models to provide regional and local-scale projections of temperature, precipitation, and other climate variables over the coming decades. The UKCP models have been used to inform policy and decision-making in the UK on issues related to climate change adaptation and mitigation. The UKCP model projections are based on scenarios of future greenhouse gas emissions and consider the most up-to-date scientific understanding of the physical processes that drive the climate system. A total of 653 STW's, 1235 SPS's plus the associated wastewater infrastructure were assessed.

There was a phase 1 screening to identify sites at risk and a high-level screening exercise was undertaken against existing known flood zone extents. This utilised EA flood zone data sets and Defra surface water flooding data sets. A further step was taken in refining the fluvial flood zone data to exclude coastal flooding from the dataset as this risk was appraised separately as part of a Coastal Flood Risk Assessment.

Following a review of outputs from Phase 1 the assessment of sites identified at risk are taken forward to a Phase 2 assessment. The detailed assessment includes both present day risk and two climate change scenarios (RCP2.6 and 8.5) to understand the changes in flood risk over time. The assessment considers both the area flooded and a range of modelled flood depth statistics. These enhanced flood metrics can then be combined with asset information and external factors to develop a more detailed assessment of the risk to each shortlisted asset. For these sites detailed Flood Assessment Reports (FARs) are produced. These reports are designed to be used as a preliminary form of flood risk assessment identifying the potential flood risk for a specified location.

## **Option Development and Appraisal**

## **Future WINEP Investment**

Earlier this year, we presented our WINEP investment programme for 2025 onwards to the EA. Our programme includes substantial investment to improve and protect the environment from our drainage and wastewater activities. The plan focuses on the period between 2025-2030 but also considers our, and the government's, longer term strategy for environmental improvements over the next 25 years. The wastewater investments included in the WINEP for 2025 to 2030 include:

- Investigating and reducing storm overflow discharges
- Investigating and improving bathing water and shellfish water quality, usually through a reduction in storm overflow discharges
- Investigating and protecting high priority sites such as SSSIs and SACs that are impacted by our drainage and wastewater treatment activities
- Investigating and reducing the impact of nutrients and chemicals from our WwTW discharges, especially Phosphorus, usually by increasing treatment capacity to meet more stringent permit levels

- Investments at WwTWs to meet more stringent requirements under the Urban Waste Water Treatment (England and Wales) Regulations 1994, driven by population growth and to provide increased treatment capacity at septic tanks
- Increased monitoring at WwTWs, SPSs, emergency overflows, and in rivers close to our storm overflow discharge points
- Investment in bio-resources
- Investigations into future potential improvements in the treatment of nitrogen and microplastics

In all cases, we have reviewed a number of different options for each investment and have taken into account the wider environmental and societal benefits, including impacts on embodied and operational carbon. We also spoke to our customers about the types of investments, as well as solutions, that they would prefer to see in our plan. All of this, combined with a long-term 30-year view of Total Expenditure (Totex) expenditure allowed us to present a preferred option to the EA for assessment. The investments in the WINEP programme have been produced in alignment with our DWMP. The final WINEP programme is expected to be agreed in July 2023 and hence is not presented here in detail.

## **ODA** Prioritisation

The RBCS and BRAVA steps identified the Level 3 TPUs that were likely to need interventions to mitigate future risk. The PC step then assessed the severity and timing of these risks from 2020 to 2050. To further prioritise ODA effort and future interventions, ODA performance thresholds were applied to all TPUs as follows:

- Collapse Risk < 10 collapses
- Pollution & Flooding Risk incidents < 0.1% catchment total, external issues, hydraulic issues, hotspots present
- Future Flood Risk (FFR) < 5% properties at risk of internal flooding in a 1 in 50 event
- Storm Overflow (SO) Risk < 10 spills from any SO
- WWTW Compliance Best judgement

Where no thresholds were met, risk was considered low and TPUs did not proceed to ODA. Performance will continue to be monitored through the DWMP process.

The TPUs that proceeded to ODA were then classed as Standard, Extended or Complex based on the total risk score and quality of hydraulic models, to determine our ODA approach taken in ODA. Standard TPUs are small (average population 756) with simpler problems and more straightforward interventions. Extended TPUs are larger (average population 9,553), have more risks and more complicated solutions. Complex TPUs are the largest (average population 23,132) with more complex systems and solutions, but better hydraulic models.

| TPU                                    | RBCS | BRAVA | ODA | TPU Class |
|----------------------------------------|------|-------|-----|-----------|
| ALLER GROVE_STW_WHIMPLE                | YES  | YES   | NO  | N/A       |
| ASHILL_STW_ASHILL                      | YES  | YES   | NO  | N/A       |
| AYLESBEARE_STW_AYLESBEARE              | YES  | YES   | NO  | N/A       |
| BAMPTON_STW_BAMPTON                    | YES  | YES   | YES | Extended  |
| BRADNINCH_STW_BRADNINCH                | YES  | YES   | YES | Standard  |
| BRAMPFORD SPEKE_STW_BRAMPFORD<br>SPEKE | YES  | YES   | NO  | N/A       |
| BRUSHFORD_STW_BRUSHFORD                | YES  | YES   | YES | Standard  |
| BURLESCOMBE_STW_BURLESCOMBE            | YES  | YES   | YES | Standard  |
| CHERITON BISHOP_STW_CHERITON BISHOP    | YES  | YES   | YES | Standard  |
| CHERITON FITZPAINE_STW_CREDITON        | YES  | YES   | YES | Standard  |
| CLYST ST LAWRENCE_STW_CULLOMPTON       | YES  | YES   | NO  | N/A       |
| COUNTESS WEAR_STW_EXETER               | YES  | YES   | YES | Complex   |
| CULLOMPTON_STW_CULLOMPTON              | YES  | YES   | YES | Complex   |
| CULMSTOCK_STW_CULMSTOCK                | YES  | YES   | YES | Standard  |
| DULFORD_STW_DULFORD                    | YES  | YES   | NO  | N/A       |
| DULVERTON_STW_DULVERTON                | YES  | YES   | YES | Standard  |
| DUNKESWELL_STW_DUNKESWELL              | YES  | YES   | YES | Standard  |
| EXFORD_STW_EXFORD                      | YES  | YES   | NO  | N/A       |
| HALBERTON_STW_HALBERTON                | YES  | YES   | YES | Standard  |
| HEMYOCK_STW_HEMYOCK                    | YES  | YES   | NO  | N/A       |
| HOLCOMBE ROGUS_STW_HOLCOMBE<br>ROGUS   | YES  | YES   | YES | Standard  |
| KENN & KENNFORD_STW_EXETER             | YES  | YES   | YES | Extended  |
| KENTON & STARCROSS_STW_STARCROSS       | YES  | YES   | YES | Extended  |
| KERSWELL_STW_KERSWELL                  | YES  | YES   | YES | Standard  |
| LORDS MEADOW_STW_CREDITON              | YES  | YES   | YES | Extended  |

 Table 23:
 Level 3 TPUs - Progression through DWMP stages and ODA class

| TPU                                        | RBCS | BRAVA | ODA | TPU Class |
|--------------------------------------------|------|-------|-----|-----------|
| MAER LANE_STW_EXMOUTH                      | YES  | YES   | YES | Complex   |
| MARSH GREEN_STW_ROCKBEARE                  | YES  | YES   | NO  | N/A       |
| NEWTON ST CYRES_STW_NEWTON ST CYRES        | YES  | YES   | NO  | N/A       |
| PARK CLOSE_STW_CLYST HYDON                 | YES  | YES   | NO  | N/A       |
| PLYMTREE_STW_PLYMTREE                      | YES  | YES   | YES | Standard  |
| POUGHILL_STW_POUGHILL                      | YES  | YES   | NO  | N/A       |
| REWE_STW_REWE                              | YES  | YES   | YES | Extended  |
| SAMPFORD PEVERELL_STW_SAMPFORD<br>PEVEREL  | YES  | YES   | YES | Standard  |
| SANDFORD_STW_SANDFORD                      | YES  | YES   | NO  | N/A       |
| SHILLINGFORD ABBOTT_STW_SHILLINGFORD       | YES  | YES   | NO  | N/A       |
| SHILLINGFORD ST<br>GEORGE_STW_SHILLINGFORD | YES  | YES   | NO  | N/A       |
| SIDELING CLOSE_STW_DUNCHIDEOCK             | YES  | YES   | NO  | N/A       |
| SILVERTON_STW_SILVERTON                    | YES  | YES   | NO  | N/A       |
| THORVERTON_STW_THORVERTON                  | YES  | YES   | NO  | N/A       |
| TIMARU_STW_DAWLISH                         | YES  | YES   | YES | Complex   |
| TIVERTON_STW_TIVERTON                      | YES  | YES   | YES | Extended  |
| UFFCULME_STW_UFFCULME                      | YES  | YES   | YES | Extended  |
| UPLOWMAN_STW_TIVERTON                      | YES  | YES   | NO  | N/A       |
| WHITEWAYS_STW_HELE                         | YES  | YES   | NO  | N/A       |
| WILLAND_STW_WILLAND                        | YES  | YES   | YES | Standard  |
| WINSFORD_STW_WINSFORD                      | YES  | YES   | NO  | N/A       |
| WOODBURY_STW_WOODBURY                      | YES  | YES   | YES | Complex   |
| YEOFORD_STW_CREDITON                       | YES  | YES   | YES | Standard  |
| ALLERS S T_STW_ALLERS WTW                  | YES  | NO    | NO  | N/A       |
| BICKLEIGH_STW_BICKLEIGH                    | YES  | NO    | NO  | N/A       |
| BRIDGETOWN_STW_BRIDGETOWN                  | YES  | NO    | NO  | N/A       |

| TPU                                 | RBCS | BRAVA | ODA | TPU Class |
|-------------------------------------|------|-------|-----|-----------|
| BROMPTON REGIS_STW_BROMPTON REGIS   | YES  | NO    | NO  | N/A       |
| BUTTERLEIGH_STW_TIVERTON            | YES  | NO    | NO  | N/A       |
| CADBURY_STW_CADBURY                 | YES  | NO    | NO  | N/A       |
| CADELEIGH_STW_CADELEIGH             | YES  | NO    | NO  | N/A       |
| COWLEY_STW_EXETER                   | YES  | NO    | NO  | N/A       |
| DULVERTON REC S T_SEPTNK_DULVERTON  | YES  | NO    | NO  | N/A       |
| HUNTSHAM_STW_HUNTSHAM               | YES  | NO    | NO  | N/A       |
| KNOWLE_STW_CREDITON                 | YES  | NO    | NO  | N/A       |
| MAMHEAD_STW_STARCROSS               | YES  | NO    | NO  | N/A       |
| MOREBATH_STW_BAMPTON                | YES  | NO    | NO  | N/A       |
| NEW BUILDINGS_STW_COPPLESTONE       | YES  | NO    | NO  | N/A       |
| OAKFORD_STW_OAKFORD                 | YES  | NO    | NO  | N/A       |
| OAKLEIGH_STW_SHELDON                | YES  | NO    | NO  | N/A       |
| OLDWAYS END_STW_EAST ANSTEY         | YES  | NO    | NO  | N/A       |
| PENNYMOOR_STW_TIVERTON              | YES  | NO    | NO  | N/A       |
| PORT ROAD_STW_DAWLISH               | YES  | NO    | NO  | N/A       |
| PUDDINGTON_STW_PUDDINGTON           | YES  | NO    | NO  | N/A       |
| PYNES S T_SEPTNK_EXETER             | YES  | NO    | NO  | N/A       |
| SHILLINGFORD_STW_BAMPTON            | YES  | NO    | NO  | N/A       |
| SHUTE_STW_SHUTE                     | YES  | NO    | NO  | N/A       |
| STAPLE CROSS_STW_HOCKWORTHY         | YES  | NO    | NO  | N/A       |
| STOODLEIGH_STW_STOODLEIGH           | YES  | NO    | NO  | N/A       |
| TEDBURN ST MARY_STW_TEDBURN ST MARY | YES  | NO    | NO  | N/A       |
| WASHFIELD_STW_TIVERTON              | YES  | NO    | NO  | N/A       |
| WIGGINS TEAPE_STW_HELE              | YES  | NO    | NO  | N/A       |
| WIMBLEBALL DAM S T_SEPTNK_BAMPTON   | YES  | NO    | NO  | N/A       |
| WIMBLEBALL RES S T_STW_BAMPTON      | YES  | NO    | NO  | N/A       |

Of the 78 TPUs in the Exe catchment, 48 proceeded through RBCS to BRAVA (the 30 remaining catchments had 1 or no indicators breached, and if 1 indicator was breached it was not tier 1) and 27 proceeded to ODA. Of these, 15 were classed as Standard, 7 Extended and 5 Complex.

## **Intervention Selection and Assessment**

Catchment area teams reviewed each TPU and assigned up to 3 interventions to address the specific catchment risks from the standard list in the DWMP guidance (Table 24 below).

| Management Area/Option Type      | Description                                                                              | Generic option examples- Standard<br>TPU's                                    | Sub-option examples- Extended &<br>Complex TPU's                                                                                                                                            | Option ID |
|----------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                  |                                                                                          | Water efficient appliances                                                    | Promote and make available water<br>efficient appliances to reduce<br>production of domestic wastewater                                                                                     | CE1       |
|                                  | Conoria antions to manage the use of                                                     | Rainwater harvesting                                                          | Promote and make available rainwater harvesting systems                                                                                                                                     | CE2       |
| Customer side management options | Generic options to manage the use of<br>water in and arising<br>from customer properties | Customer incentives                                                           | Promotion of incentives to reduce impermeable areas                                                                                                                                         | CE3       |
|                                  |                                                                                          | Domestic and business customer<br>education (Targeted Customer<br>Behaviours) | Love Your Loo, etc. Likely focus at L1;<br>however, where location specific<br>issues are identified activities could<br>be targeted around what should and<br>shouldn't be put down sewers | CE4       |
|                                  |                                                                                          | Surface water source control measures                                         | Company installation of source<br>control sustainable drainage systems<br>(SuDS)                                                                                                            | SWM1      |
| Surface water management -       | Generic options within catchments to manage surface                                      | Surface water source control measures                                         | SuDS partnerships with key stakeholders                                                                                                                                                     | SWM2      |
| Pollution & Flooding, Overflows  | water flows entering the conveyance system                                               | Surface water source control measures                                         | Upper Catchment Solution/Upstream<br>Thinking                                                                                                                                               | SWM3      |
|                                  |                                                                                          | Surface water pathway measures                                                | Separate surface water from<br>combined systems by constructing<br>new surface water networks (and/or                                                                                       | SWM4      |

Table 24: Generic Interventions

| Management Area/Option Type                                          | Description                                                                                       | Generic option examples- Standard<br>TPU's               | Sub-option examples- Extended &<br>Complex TPU's                                                                                                          | Option ID |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                      |                                                                                                   |                                                          | modify existing)                                                                                                                                          |           |
|                                                                      |                                                                                                   | Surface water pathway measures                           | Integrate surface water pathway<br>measures into new and upgraded<br>third party designs                                                                  | SWM5      |
|                                                                      |                                                                                                   | Surface water infiltration measures                      | Develop a program to reduce Surface<br>Water Infiltration                                                                                                 | SWM6      |
|                                                                      | Generic options to manage flows                                                                   | Intelligent network operation                            | Implement widespread<br>sewer/pumping station level<br>monitoring, live network modelling<br>linked to operational responses such<br>as proactive jetting | CFS1      |
| Combined and foul sewer systems -<br>Overflows, Pollution & Flooding | within the conveyance<br>system to minimise impacts on<br>customers and the<br>environment        | Increase the capacity of existing foul/combined networks | Construct new stormwater storage systems                                                                                                                  | CFS2      |
| Collapses                                                            |                                                                                                   | Increase the capacity of existing foul/combined networks | Replace or upgrade existing networks                                                                                                                      | CFS3      |
|                                                                      |                                                                                                   | Wastewater transfers                                     | Inter-catchment network transfers                                                                                                                         | CFS4      |
|                                                                      |                                                                                                   | Wastewater transfers                                     | inter-catchment WwTW transfers                                                                                                                            | CFS5      |
| Wastewater treatment                                                 | Generic options to manage flows and<br>loads at wastewater<br>treatment works to minimise impacts | Treat or pre-treat wastewater in the network             | Treat or pre-treat flows at existing<br>pumping stations or within sewer<br>network                                                                       | WWT1      |
|                                                                      | on customers and the<br>environment                                                               | Increase treatment capacity                              | Upgrade existing works using more<br>intensive processes                                                                                                  | WWT2      |

| Management Area/Option Type | Description | Generic option examples- Standard<br>TPU's           | Sub-option examples- Extended &<br>Complex TPU's                                | Option ID |
|-----------------------------|-------------|------------------------------------------------------|---------------------------------------------------------------------------------|-----------|
|                             |             | Increase treatment capacity                          | Add additional process streams (increase plant capacity)                        | WWT3      |
|                             |             | Treatment works rationalisation/<br>decentralisation | Replace existing treatment works with one large scale installation              | WWT4      |
|                             |             | Treatment works rationalisation/<br>decentralisation | Replace existing treatment works<br>with several smaller scale<br>installations | WWT5      |
|                             |             | Modify consents and permits                          | Catchment consenting                                                            | WWT7      |
|                             |             | Modify consents and permits                          | Adaptive consenting (e.g. "wet weather" relaxation)                             | WWT8      |
|                             |             | Catchment management initiatives                     | Initiatives to address fertiliser use and application                           | WWT9      |

These initial selections were then subject the following checks and reviews:

- Internal review by Catchment Managers (all) and WwTW experts (WwTW)
- External review by key stakeholders (all)
- Internal hydraulic modelling of selected catchments and extrapolation of modelling results to non-modelled catchments (FFR and SO risk)
- Internal review of the above by DWMP team

## Intervention Quantification and Costing

Preferred interventions were quantified using modelling and extrapolation. Up to 5 final interventions were selected, reflecting the need for a combination of solutions. Costs were provided by South West Water's cost consultants, using approved cost models based on South West Water data where possible, and from past South West Water scheme data or industry recognised estimates if not.

The approach was different for different risks:

*Collapses* – Quantification and costing not included in DWMP. Risks and interventions noted but plan already covered by wider programme of sewer rehabilitation and repairs.

*Pollution & Flooding* – Quantification and costing included in DWMP only where an enhancement over and above existing programmes of work were recommended.

*Future Flood Risk (FFR)* – 26 Complex catchments were hydraulically modelled to assess options to address risk. The results were used to extrapolate to non-modelled catchments. It was assumed at the outset that Nature Based solutions such as Sustainable drainage systems (SuDS) were a possibility wherever surface water separation (SWS) was suggested. Suitability of SuDS for surface water separation assessed at high level using Stantec's GIS based Surface Water Assessment Tool (SWAT) analysis.

*Storm Overflows (SO)* - 12 catchments (8 complex 4 extended) were selected for hydraulic modelling to give coverage of 233 SOs (c.20% of South West Water total) and a representative sample of receiving waters. Results were used to extrapolate to non-modelled DWMP TPUs. To meet the later DEFRA SO guidance, a separate top-down desktop model based on Event Duration Monitor (EDM) spill data was developed to assess total need for all TPUs.

*WWTW Performance* – Analyses of Biological Oxygen Demand (BOD) Capacity and DWF permit compared with future population and flow projections were used to assess sites at future risk of meeting permit requirements. The scale of upgrades needed was estimated using a calculation of the increase in population equivalent PE or additional capacity in cubic metres required at the works.

#### **Results - Interventions**

Table 25 below outlines the final interventions selected for the TPUs in the Exe catchment, along with potential solutions involving partnership working or nature-based solutions. The intervention codes applied are defined in Table 24 above.

| TPU                     | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                                                                                                                                                                                                                                | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                       |
|-------------------------|----------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BAMPTON_ST<br>W_BAMPTON | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short term:<br>EA: Bampton<br>on FDGiA<br>programme,<br>EA worked<br>with Motts,<br>struggled to<br>fund.<br>Investment<br>needs linking<br>to other<br>RMA activity<br>to be viable.<br>Any DWMP<br>work will<br>help deliver<br>FRMP<br>measures for<br>Bampton<br>SWW:<br>Potential<br>SUDS | CFS2     | SWM4     | SWM6     | WWT3     |          | Wastewater<br>treatment<br>intervention<br>WWT3 and<br>Surface wate<br>management<br>interventions<br>SWM4,SWM6<br>and Combine<br>and foul sewe<br>systems CFS2<br>carried over. |

**Table 25**: TPU interventions selection and feedback

| TPU                                 | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments       | Partnership<br>working<br>potential<br>Comments                                                           | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                                                                             |
|-------------------------------------|----------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BRADNINCH_S<br>TW_BRADNIN<br>CH     | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation<br>identified | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS<br>identified | CFS2     | SWM4     | SWM6     | SWM2     | WWT3     | Surface water<br>management<br>intervention<br>SWM6 carried<br>forward with<br>SWM2 and<br>SWM4 added<br>Combined and<br>foul sewer<br>systems CFS5<br>replaced with<br>CFS2.<br>Wastewater<br>treatment<br>intervention<br>WWT3 added |
| BRUSHFORD_S<br>TW_BRUSHFO<br>RD     | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation               | SWW:<br>Potential<br>SUDS                                                                                 | CFS2     | SWM4     | SWM6     |          |          | Combined and<br>foul sewer<br>systems CFS2<br>carried over<br>alongside<br>SWM4 and<br>SWM6.                                                                                                                                           |
| BURLESCOMBE<br>_STW_BURLES<br>COMBE | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation               | SWW:<br>Potential<br>SUDS                                                                                 | SWM6     | WWT3     |          |          |          | Wastewater<br>treatment<br>intervention<br>WWT3 carried<br>over but                                                                                                                                                                    |

| TPU                                           | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                           |
|-----------------------------------------------|----------|--------------------------------------------------------|-------------------------------------------------|----------|----------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                               |          | -                                                      |                                                 |          |          | -        | -        | -        | WWT2<br>removed<br>alongside<br>CSF2. Surface<br>water<br>management<br>intervention<br>SWM6 carried<br>over but<br>SWM4<br>removed. |
| CHERITON<br>BISHOP_STW_<br>CHERITON<br>BISHOP | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                       | CFS2     | SWM4     | SWM6     | WWT3     |          | Combined and<br>foul sewer<br>systems CFS2<br>carried over<br>with Surface<br>water<br>management<br>SWM4 and<br>SWM6. WWT<br>added. |
| CHERITON<br>FITZPAINE_ST<br>W_CREDITON        | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                       | CFS2     | SWM4     | WWT3     |          |          | Combined and<br>foul sewer<br>systems CFS2<br>carried over,<br>CFS1 removed<br>alongside<br>SWM6. WWT                                |

| TPU                               | Class   | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                                                                                                        | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                                              |
|-----------------------------------|---------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |         | -                                                      |                                                                                                                                                                        |          |          | -        | -        |          | and SWM4 carried over.                                                                                                                                                                                  |
| COUNTESS<br>WEAR_STW_E<br>XETER   | Complex | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>long term,<br>EA: NFM in<br>urban<br>catchments'<br>above'<br>Exeter (Red<br>Cow) ECC/EA<br>SWW:<br>Potential<br>SUDS                                     | CFS2     | SWM4     | SWM3     | WWT3     |          | Combined and<br>foul sewer<br>systems CFS2<br>carried over<br>with Surface<br>water<br>management<br>SWM4,SWM3<br>and WWT3.<br>SWM6<br>removed.                                                         |
| CULLOMPTON<br>_STW_CULLO<br>MPTON | Complex | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short term,<br>Devon CC:<br>NFM in<br>upper<br>catchments<br>of the Crow<br>Green<br>Stream and<br>Cole Brook.<br>Connecting<br>the Culm.<br>SWW:<br>Potential<br>SUDS | CFS2     | SWM4     | SWM6     | WWT3     |          | Surface water<br>management<br>intervention<br>SWM4 &<br>SWM6 carried<br>over.<br>Combined and<br>foul sewer<br>systems CFS2<br>carried over.<br>Waste Water<br>Treatment<br>WWT3 also<br>carried over. |

| TPU                             | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                             | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                                                                                            |
|---------------------------------|----------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CULMSTOCK_S<br>TW_CULMSTO<br>CK | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS | CFS2     | SWM4     | SWM6     |          |          | Surface water<br>management<br>intervention<br>SWM4 &<br>SWM6 carried<br>over.<br>Combined and<br>foul sewer<br>systems CFS2<br>also carried<br>over.                                                                                                 |
| DULVERTON_S<br>TW_DULVERT<br>ON | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                                                                   | CFS2     | SWM4     | SWM6     | WWT3     |          | Wastewater<br>treatment<br>intervention<br>WWT2<br>removed.<br>Wastewater<br>treatment<br>intervention<br>WWT3 and<br>Surface wate<br>management<br>intervention<br>SWM4 carrier<br>over.<br>Combined an<br>foul sewer<br>systems CFS2<br>and Surface |

| TPU                               | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments       | Partnership<br>working<br>potential<br>Comments                                                           | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                                                                                                                                                    |
|-----------------------------------|----------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |          |                                                              |                                                                                                           |          |          |          |          |          | water<br>management<br>intervention<br>SWM6 added                                                                                                                                                                                                                                                             |
| DUNKESWELL_<br>STW_DUNKES<br>WELL | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation<br>identified | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS<br>identified | CFS2     | SWM4     | SWM6     | WWT3     | SWM2     | Combined and<br>foul sewer<br>systems CFS2<br>and Surface<br>water<br>management<br>intervention<br>SWM6 and<br>SWM2 carried<br>over. Surface<br>water<br>management<br>intervention<br>SWM4 and<br>Wastewater<br>Treatment<br>WWT3 added.<br>Surface water<br>management<br>intervention<br>SWM5<br>removed. |
| HALBERTON_S<br>TW_HALBERT         | Standard | SWW:<br>Potential                                            | SWW:<br>Potential                                                                                         | CFS2     | SWM4     | SWM6     | WWT3     |          | Combined and<br>foul sewer                                                                                                                                                                                                                                                                                    |

| TPU                                         | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments       | Partnership<br>working<br>potential<br>Comments                                                           | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                                                                                                                      |
|---------------------------------------------|----------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ON                                          |          | SUDS for SW<br>separation                                    | SUDS                                                                                                      |          |          |          |          |          | systems CFS<br>Surface wate<br>managemen<br>intervention<br>SWM4 and<br>WWT3<br>Wastewate<br>treatment<br>carried over<br>Surface wate<br>managemen<br>intervention<br>SWM6 addee<br>Combined an<br>foul sewer<br>systems CFS<br>and WWT2<br>Wastewate<br>treatment<br>removed. |
| HOLCOMBE<br>ROGUS_STW_<br>HOLCOMBE<br>ROGUS | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation<br>identified | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS<br>identified | CFS2     | SWM4     | SWM6     | SWM2     | WWT3     | Combined ar<br>foul sewer<br>systems CFS<br>Surface Wate<br>managemen<br>SWM2 &<br>SWM6 carrie<br>over. Surfac<br>Water                                                                                                                                                         |

| TPU                                     | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                               | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                               |
|-----------------------------------------|----------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |          | -                                                      |                                                                                               |          |          |          |          |          | management<br>SWM4 and<br>Wastewater<br>treatment<br>WWT3 added                                                                                                          |
| KENN &<br>KENNFORD_ST<br>W_EXETER       | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>Long term,<br>EA: NFM in<br>upper<br>catchment<br>SWW:<br>Potential<br>SUDS, UST | CFS2     | SWM4     | SWM6     | WWT3     | SWM3     | Combined and<br>foul sewer<br>systems CFS2<br>Surface water<br>management<br>SWM4, SWM3<br>and SWM6<br>carried over.<br>Wastewater<br>treatment<br>WWT3 carried<br>over. |
| KENTON &<br>STARCROSS_ST<br>W_STARCROSS | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>Long term,<br>EA: NFM in<br>upper<br>catchment<br>SWW:<br>Potential<br>SUDS      | CFS2     | SWM4     |          |          |          | Combined and<br>foul sewer<br>systems CFS2<br>and Surface<br>water<br>management<br>SWM4 carried<br>over. Surface<br>water<br>management<br>SWM6                         |

| TPU                              | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments       | Partnership<br>working<br>potential<br>Comments | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                        |
|----------------------------------|----------|--------------------------------------------------------------|-------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |          |                                                              | -                                               | -        | -        | -        | _        | -        | removed.                                                                                                                                          |
| KERSWELL_ST<br>W_KERSWELL        | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation<br>identified | SWW:<br>Potential<br>SUDS<br>identified         |          |          |          |          |          | continue to<br>monitor risk<br>no<br>interventior<br>needed                                                                                       |
| LORDS<br>MEADOW_ST<br>W_CREDITON | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation<br>identified | SWW:<br>Potential<br>SUDS<br>identified         | CFS2     | SWM4     | SWM6     | WWT3     | SWM2     | Combined an<br>foul sewer<br>systems CFS2<br>Surface Wate<br>managemen<br>SWM2, SWM4<br>SWM6,<br>Wastewater<br>treatment<br>WWT3 carrie<br>over.  |
| MAER<br>LANE_STW_EX<br>MOUTH     | Complex  | SWW:<br>Potential<br>SUDS for SW<br>separation               | SWW:<br>Potential<br>SUDS                       | CFS2     | SWM4     | WWT3     |          |          | Surface Wate<br>managemen<br>SWM4,<br>Combined an<br>foul sewer<br>systems CFS2<br>Wastewater<br>treatment<br>WWT3 carrie<br>over.<br>Combined an |

southwestwater.co.uk

| TPU                             | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                            |
|---------------------------------|----------|--------------------------------------------------------|-------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |          |                                                        | <u> </u>                                        |          |          |          |          |          | foul sewer<br>systems CFS3<br>removed.                                                                                                                                                |
| MOSTERTON_<br>SPS_Mosterto<br>n | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                       |          |          | SWM6     |          |          | Surface water<br>management<br>SWM4 and<br>Combined and<br>foul sewer<br>systems CFS2<br>removed.<br>Surface water<br>management<br>SWM6 was<br>retained.                             |
| PLYMTREE_ST<br>W_PLYMTREE       | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                       | SWM6     | WWT3     |          |          |          | Wastewater<br>treatment<br>intervention<br>WWT2 and<br>Combined an<br>foul sewer<br>systems CFS2<br>and Surface<br>water<br>management<br>SWM4<br>removed.<br>Wastewater<br>treatment |

| TPU                                              | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments       | Partnership<br>working<br>potential<br>Comments                                                           | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                           |
|--------------------------------------------------|----------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |          | _                                                            |                                                                                                           |          |          |          |          | -        | intervention<br>WWT3 and<br>Surface water<br>management<br>SWM6<br>retained.                                                                         |
| REWE_STW_R<br>EWE                                | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation               | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS               | CFS2     | SWM4     | SWM6     | WWT3     |          | Combined and<br>foul sewer<br>systems CFS2,<br>Surface water<br>management<br>SWM4 &<br>SWM6 and<br>Wastewater<br>treatment<br>WWT3 carried<br>over. |
| SAMPFORD<br>PEVERELL_ST<br>W_SAMPFORD<br>PEVEREL | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation<br>identified | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS<br>identified | CFS2     | SWM4     | SWM6     |          |          | Surface water<br>management<br>SWM6 carried<br>over with<br>CFS2. Surface<br>water<br>management<br>SWM2<br>replaced with<br>SWM4.                   |

| TPU                       | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                                                                                                                                                  | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                                       |
|---------------------------|----------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMARU_STW_<br>DAWLISH    | Complex  | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>Long term,<br>EA: NFM in<br>upper<br>catchment.<br>Dawlish<br>Water<br>scheme on<br>programme<br>Long term,<br>EA:<br>Shutteron<br>Brook tidal<br>scheme<br>SWW:<br>Potential<br>SUDS<br>identified | CFS2     | SWM4     | SWM3     |          |          | Combined and<br>foul sewer<br>systems CFS2<br>and Surface<br>water<br>management<br>SWM4 &<br>SWM3 carried<br>over. Surface<br>water<br>management<br>SWM6 &<br>SWM1<br>removed. |
| TIVERTON_ST<br>W_TIVERTON | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short term,<br>EA: Tiverton<br>being<br>surveyed for<br>fluvial re-<br>modelling.<br>Potential<br>joint scheme<br>using<br>Tiverton line                                                                         | CFS2     | SWM4     | WWT3     |          |          | Combined and<br>foul sewer<br>systems CFS2<br>and Surface<br>water<br>management<br>SWM4 carried<br>over.<br>Customer side<br>management                                         |

| TPU                       | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                             | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                        |
|---------------------------|----------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|                           |          |                                                        | on current<br>capital prog.<br>SWW:<br>Potential<br>SUDS                                    |          |          |          |          |          | options CE3<br>and Surface<br>water<br>managemen<br>SWM6<br>removed.<br>Wastewater<br>treatment<br>WWT3 addec                                     |
| UFFCULME_ST<br>W_UFFCULME | Extended | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>long term,<br>Devon CC:<br>Connecting<br>the Culm<br>SWW:<br>Potential<br>SUDS | CFS2     | SWM4     | SWM6     | WWT3     |          | Combined an<br>foul sewer<br>systems CFS2<br>Wastewater<br>treatment<br>WWT3 and<br>Surface wate<br>managemen<br>SWM4 and<br>SWM6 Carrie<br>over. |
| WILLAND_STW<br>_WILLAND   | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                                                                   | CFS2     | SWM4     | SWM6     |          |          | Combined an<br>foul sewer<br>systems CFS:<br>and Surface<br>water<br>managemen<br>SWM4 and<br>SWM6 carrie                                         |

| TPU                           | Class    | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments                                                                                                                                                                                 | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                                                                                                                             |
|-------------------------------|----------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |          | -                                                      |                                                                                                                                                                                                                                 |          |          |          |          |          | over.<br>Wastewater<br>treatment<br>WWT2 was<br>removed.                                                                                                               |
| WOODBURY_S<br>TW_WOODBU<br>RY | Complex  | SWW:<br>Potential<br>SUDS for SW<br>separation         | Short and<br>Long term,<br>EA:<br>Woodbury<br>scheme<br>being<br>considered<br>for capital<br>prog, no<br>work done to<br>date,<br>potential for<br>collaboration<br>-<br>modelling/sc<br>heme etc<br>SWW:<br>Potential<br>SUDS | CFS2     | SWM4     | SWM6     | WWT3     |          | Combined and<br>foul sewer<br>systems CFS2,<br>Wastewater<br>treatment<br>intervention<br>WWT3 and<br>Surface water<br>management<br>SWM4 and<br>SWM6 carried<br>over. |
| YEOFORD_ST<br>W_CREDITON      | Standard | SWW:<br>Potential<br>SUDS for SW<br>separation         | SWW:<br>Potential<br>SUDS                                                                                                                                                                                                       | CFS2     | SWM4     | SWM6     |          |          | Surface water<br>management<br>SWM6 &<br>SWM4 and                                                                                                                      |

| TPU | Class | Nature<br>based<br>solutions<br>assessment<br>Comments | Partnership<br>working<br>potential<br>Comments | Final #1 | Final #2 | Final #3 | Final #4 | Final #5 | Final DWMP<br>ODA<br>assessment<br>summary                  |
|-----|-------|--------------------------------------------------------|-------------------------------------------------|----------|----------|----------|----------|----------|-------------------------------------------------------------|
|     | -     |                                                        |                                                 |          |          |          |          |          | Combined and<br>foul sewer<br>systems CFS2<br>carried over. |

For the Exe catchment, 27 TPUs progressed to ODA. Stakeholder feedback was received on 16 TPUs. The feedback was mainly on the need to:

- Consult the EA and partners on potential Surface Water Separation (SWS) plans
- Consider links to surface water, fluvial and sea flooding, planned schemes
- Consider coastal erosion risk

Potential Nature Based Solutions were identified for 12 catchments (largely SuDS for Surface Water Separation) and partnership opportunities were identified for 12 catchments (largely on SWS/SuDS).

Table 26 below summarises the final interventions selected now that the ODA stage is complete.

|                                                                                                                                                         | 51                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| INTERVENTION                                                                                                                                            | Total<br>selected<br>Final |
| CE1: Promote and make available water efficient appliances to reduce production of domestic wastewater                                                  | 0                          |
| CE2: Promote and make available rainwater harvesting systems                                                                                            | 0                          |
| CE3: Promotion of incentives to reduce impermeable areas                                                                                                | 0                          |
| CE4: Love Your Loo, etc                                                                                                                                 | 0                          |
| SWM1: Company installation of source control sustainable drainage systems (SuDS)                                                                        | 0                          |
| SWM2: SuDS partnerships with key stakeholders                                                                                                           | 4                          |
| SWM3: Upper Catchment Solution/Up Stream Thinking                                                                                                       | 3                          |
| SWM4: Separate surface water from combined systems by constructing new surface water networks (and/or modify existing)                                  | 24                         |
| SWM5: Integrate surface water pathway measures into new and upgraded third party designs                                                                | 0                          |
| SWM6: Develop a program to reduce infiltration                                                                                                          | 21                         |
| CFS1: Implement widespread sewer/pumping station level monitoring, live;<br>network modelling linked to operational responses such as proactive jetting | 0                          |
| CFS2: Construct new combined or foul storage systems                                                                                                    | 24                         |
| CFS3: Replace or upgrade existing networks                                                                                                              | 0                          |
| CFS4: Inter-catchment network transfers                                                                                                                 | 0                          |
| CFS5: inter-catchment WwTW's transfers                                                                                                                  | 0                          |
|                                                                                                                                                         |                            |

**Table 26**: Initial and Final Interventions selected by intervention type

| INTERVENTION                                                                        | Total<br>selected<br>Final |
|-------------------------------------------------------------------------------------|----------------------------|
| WWT1: Treat or pre-treat flows at existing pumping stations or within sewer network | 0                          |
| WWT2: Upgrade existing works using more intensive processes                         | 0                          |
| WWT3: Add additional process streams (increase plant capacity)                      | 19                         |
| WWT4: Replace existing treatment works with one large scale installation            | 0                          |
| WWT5: Replace existing treatment works with several smaller scale installations     | 0                          |
| WWT7: Catchment consenting                                                          | 0                          |
| WWT8: Adapative consenting (e.g. "wet weather" relaxation)                          | 0                          |
| WWT9: Initiatives to address fertiliser use and application                         | 0                          |
| Total                                                                               | 95                         |

There were no interventions selected in the Exe catchment for customer education, although education to promote water efficiency, rainwater harvesting, reducing impermeable areas and preventing sewer misuse will be delivered across the region as part of a company-wide initiative. There were no interventions selected for CFS1 monitoring to direct proactive jetting effort to manage flooding and pollution incidents due to blockages.

Construction of storage systems (CFS2) was recommended based on the results of modelling for storm overflow risk and the preferred solution being a combination of surface water separation and storage.

Where a strategic network or treatment intervention was selected (CFS4,5 WWT4,5) the selection was noted but not progressed under DWMP. These strategic decisions will lead to bespoke plans which will be revisited for PR24 and captured separately in the programme.

The ODA process led to a lot more Surface Water Management (SWM) interventions being selected. Infiltration (SWM6) was selected in all catchments, with the view that this would be the first task to help understand flows and identify opportunities for Surface Water Separation (SWM4), SuDS (SWM1,2) and other nature-based solutions such as Upstream Thinking and Natural Flood Management (SWM3). Our assumption is that unless specifically ruled out, Nature Based solutions such as SuDS will be possible, so they will be explored wherever surface water separation was selected.

## **Results – Quantities**

Table 27 below outlines the quantities of interventions proposed by the DWMP for the Exe catchment.

| TPU                                       | Storage<br>(m3) | SWS (ha) | Network<br>Enhancement<br>(km) | No.<br>WWTW<br>for<br>Capacity<br>increase | No.<br>WWTW<br>for DWF<br>increase | No.<br>WWTW<br>for<br>Nutrient<br>reduction |
|-------------------------------------------|-----------------|----------|--------------------------------|--------------------------------------------|------------------------------------|---------------------------------------------|
| ALLER GROVE_STW_WHIMPLE                   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| ALLERS S T_STW_ALLERS<br>WTW              | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| ASHILL_STW_ASHILL                         | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| AYLESBEARE_STW_AYLESBEA<br>RE             | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 1                                           |
| BAMPTON_STW_BAMPTON                       | 1,613           | 7.16     | 2.10                           | 1                                          | 0                                  | 1                                           |
| BICKLEIGH_STW_BICKLEIGH                   | 424             | 2.95     | 0.76                           | 0                                          | 0                                  | 0                                           |
| BRADNINCH_STW_BRADNINC<br>H               | 1,760           | 4.35     | 8.92                           | 0                                          | 1                                  | 0                                           |
| BRAMPFORD<br>SPEKE_STW_BRAMPFORD<br>SPEKE | 0               | 0.00     | 0.00                           | 0                                          | 1                                  | 1                                           |
| BRIDGETOWN_STW_BRIDGET<br>OWN             | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| BROMPTON<br>REGIS_STW_BROMPTON<br>REGIS   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| BRUSHFORD_STW_BRUSHFOR<br>D               | 579             | 3.26     | 3.28                           | 0                                          | 0                                  | 0                                           |
| BURLESCOMBE_STW_BURLES<br>COMBE           | 0               | 0.00     | 3.49                           | 1                                          | 1                                  | 1                                           |
| BUTTERLEIGH_STW_TIVERTO<br>N              | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| CADBURY_STW_CADBURY                       | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| CADELEIGH_STW_CADELEIGH                   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| CHERITON<br>BISHOP_STW_CHERITON<br>BISHOP | 24              | 0.11     | 3.08                           | 0                                          | 0                                  | 1                                           |
| CLYST ST<br>LAWRENCE_STW_CULLOMPT<br>ON   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| COUNTESS                                  | 17,476          | 54.93    | 0.00                           | 1                                          | 2                                  | 0                                           |

# Table 27: Quantities for proposed interventions

| TPU                                     | Storage<br>(m3) | SWS (ha) | Network<br>Enhancement<br>(km) | No.<br>WWTW<br>for<br>Capacity<br>increase | No.<br>WWTW<br>for DWF<br>increase | No.<br>WWTW<br>for<br>Nutrient<br>reduction |
|-----------------------------------------|-----------------|----------|--------------------------------|--------------------------------------------|------------------------------------|---------------------------------------------|
| WEAR_STW_EXETER                         |                 | -        | -                              | -                                          | -                                  | -                                           |
| COWLEY_STW_EXETER                       | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| CULLOMPTON_STW_CULLOM<br>PTON           | 386             | 4.48     | 48.12                          | 1                                          | 1                                  | 1                                           |
| CULMSTOCK_STW_CULMSTO<br>CK             | 166             | 2.03     | 2.79                           | 0                                          | 0                                  | 0                                           |
| DULFORD_STW_DULFORD                     | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| DULVERTON REC S<br>T_SEPTNK_DULVERTON   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| DULVERTON_STW_DULVERTO<br>N             | 10,050          | 13.29    | 6.38                           | 1                                          | 0                                  | 0                                           |
| DUNKESWELL_STW_DUNKES<br>WELL           | 196             | 3.03     | 9.70                           | 1                                          | 0                                  | 0                                           |
| EXFORD_STW_EXFORD                       | 0               | 0.00     | 1.06                           | 0                                          | 0                                  | 0                                           |
| HALBERTON_STW_HALBERTO<br>N             | 287             | 2.57     | 4.18                           | 1                                          | 1                                  | 1                                           |
| HEMYOCK_STW_HEMYOCK                     | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 1                                           |
| HOLCOMBE<br>ROGUS_STW_HOLCOMBE<br>ROGUS | 1,999           | 7.58     | 2.67                           | 0                                          | 0                                  | 1                                           |
| HUNTSHAM_STW_HUNTSHA<br>M               | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| KENN &<br>KENNFORD_STW_EXETER           | 5,000           | 7.00     | 5.95                           | 1                                          | 1                                  | 0                                           |
| KENTON &<br>STARCROSS_STW_STARCROSS     | 41              | 0.70     | 0.00                           | 0                                          | 0                                  | 0                                           |
| KERSWELL_STW_KERSWELL                   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| KNOWLE_STW_CREDITON                     | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| LORDS<br>MEADOW_STW_CREDITON            | 2,430           | 11.05    | 19.30                          | 1                                          | 0                                  | 0                                           |
| MAER LANE_STW_EXMOUTH                   | 3,824           | 9.60     | 0.00                           | 1                                          | 0                                  | 0                                           |
| MAMHEAD_STW_STARCROSS                   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |

| TPU                                          | Storage<br>(m3) | SWS (ha) | Network<br>Enhancement<br>(km) | No.<br>WWTW<br>for<br>Capacity<br>increase | No.<br>WWTW<br>for DWF<br>increase | No.<br>WWTW<br>for<br>Nutrient<br>reduction |
|----------------------------------------------|-----------------|----------|--------------------------------|--------------------------------------------|------------------------------------|---------------------------------------------|
| MARSH<br>GREEN_STW_ROCKBEARE                 | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| MOREBATH_STW_BAMPTON                         | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| NEW<br>BUILDINGS_STW_COPPLESTO<br>NE         | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| NEWTON ST<br>CYRES_STW_NEWTON ST<br>CYRES    | 0               | 0.00     | 6.79                           | 0                                          | 0                                  | 1                                           |
| OAKFORD_STW_OAKFORD                          | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| OAKLEIGH_STW_SHELDON                         | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| OLDWAYS END_STW_EAST<br>ANSTEY               | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| PARK CLOSE_STW_CLYST<br>HYDON                | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| PENNYMOOR_STW_TIVERTO<br>N                   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| PLYMTREE_STW_PLYMTREE                        | 0               | 0.00     | 1.86                           | 1                                          | 0                                  | 1                                           |
| POUGHILL_STW_POUGHILL                        | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| PUDDINGTON_STW_PUDDING<br>TON                | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| PYNES S T_SEPTNK_EXETER                      | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| REWE_STW_REWE                                | 2,017           | 4.48     | 6.23                           | 0                                          | 0                                  | 1                                           |
| SAMPFORD<br>PEVERELL_STW_SAMPFORD<br>PEVEREL | 1,154           | 4.27     | 6.57                           | 0                                          | 0                                  | 0                                           |
| SANDFORD_STW_SANDFORD                        | 72              | 1.21     | 3.06                           | 0                                          | 0                                  | 1                                           |
| SHILLINGFORD<br>ABBOTT_STW_SHILLINGFORD      | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| SHILLINGFORD ST<br>GEORGE_STW_SHILLINGFORD   | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| SHILLINGFORD_STW_BAMPTO<br>N                 | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |

| TPU                                       | Storage<br>(m3) | SWS (ha) | Network<br>Enhancement<br>(km) | No.<br>WWTW<br>for<br>Capacity<br>increase | No.<br>WWTW<br>for DWF<br>increase | No.<br>WWTW<br>for<br>Nutrient<br>reduction |
|-------------------------------------------|-----------------|----------|--------------------------------|--------------------------------------------|------------------------------------|---------------------------------------------|
| SHUTE_STW_SHUTE                           | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| SIDELING<br>CLOSE_STW_DUNCHIDEOCK         | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| SILVERTON_STW_SILVERTON                   | 25              | 0.15     | 9.72                           | 0                                          | 0                                  | 0                                           |
| STAPLE<br>CROSS_STW_HOCKWORTHY            | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| STOODLEIGH_STW_STOODLEI<br>GH             | 0               | 0.00     | 3.09                           | 0                                          | 0                                  | 0                                           |
| TEDBURN ST<br>MARY_STW_TEDBURN ST<br>MARY | 34              | 0.46     | 6.55                           | 0                                          | 0                                  | 1                                           |
| THORVERTON_STW_THORVER<br>TON             | 45              | 0.16     | 0.00                           | 0                                          | 0                                  | 1                                           |
| TIMARU_STW_DAWLISH                        | 4,448           | 12.10    | 0.00                           | 0                                          | 0                                  | 0                                           |
| TIVERTON_STW_TIVERTON                     | 11,507          | 14.36    | 0.00                           | 0                                          | 1                                  | 1                                           |
| UFFCULME_STW_UFFCULME                     | 129             | 1.78     | 8.97                           | 1                                          | 0                                  | 0                                           |
| UPLOWMAN_STW_TIVERTON                     | 0               | 0.00     | 0.96                           | 0                                          | 0                                  | 0                                           |
| WASHFIELD_STW_TIVERTON                    | 0               | 0.00     | 0.61                           | 0                                          | 0                                  | 0                                           |
| WHITEWAYS_STW_HELE                        | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| WIGGINS TEAPE_STW_HELE                    | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| WILLAND_STW_WILLAND                       | 658             | 5.40     | 16.16                          | 0                                          | 0                                  | 0                                           |
| WIMBLEBALL DAM S<br>T_SEPTNK_BAMPTON      | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| WIMBLEBALL RES S<br>T_STW_BAMPTON         | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| WINSFORD_STW_WINSFORD                     | 0               | 0.00     | 0.00                           | 0                                          | 0                                  | 0                                           |
| WOODBURY_STW_WOODBUR<br>Y                 | 1,176           | 5.88     | 6.19                           | 1                                          | 0                                  | 0                                           |
| YEOFORD_STW_CREDITON                      | 1,102           | 3.89     | 12.94                          | 0                                          | 0                                  | 0                                           |

Our proposals for the Exe catchment include approximately 188ha of SWS by conventional or SUDS solutions, 68,621m<sup>3</sup> of storage, 211km of network enhancement, work to improve

DWF compliance at 9 treatment sites, upgrading of capacity at 13 treatment sites and work to reduce nutrients at 16 treatment sites.<sup>2</sup>

## Surface Water Separation and SuDS Assessment

To explore opportunities for SWS and SuDS, Stantec's GIS based Surface Water Assessment Tool (SWAT) was applied to the 26 Complex TPUs that were hydraulically modelled for future flood risk (FFR). The tool plots impermeable area, green space, existing networks, buildings, roads and watercourses. It plots existing foul combined and surface water networks and identifies where surface water sewers join combined sewers as potential points for disconnection. It identifies potential land and road space as well as residential and commercial properties for different interventions. Appendix F outlines the approach.

The high-level results indicate that on average it is estimated that SuDS might be suitable for delivering approximately 55% of the SWS required to mitigate the future flood risk in modelled catchments. This ranged from 0% where there was limited space, impermeable land, and no water courses present to discharge to, to 100% in some TPUs. We intend to develop the tool and process in more detail in the future as we progress the first DWMP interventions through feasibility.

# **Upstream Thinking and Natural Flood Management**

Appendix G shows the coverage of current UST projects in the SWW region where upper catchment solutions are being successfully explored and the intention is to expand this approach. South West Water's infiltration and site surveys may identify opportunities for Natural Flood Management and Upstream Thinking interventions in the Exe catchment. South West Water intend to collaborate with the EA and take a similar GIS based approach to assessing Natural Flood Management options where tackling shared surface water flooding issues.

## **Next Steps**

A cornerstone of the DWMP framework and process is collaboration between water companies and key stakeholders. To be successful in developing an effective plan that provides innovative solutions and better value for customers, while protecting our environment and ensuring we meet the future pressure on our drainage systems, we need to work together, and we rely on the active participation of our stakeholders to engage with us in the concept, planning and delivery of this plan.

<sup>&</sup>lt;sup>2</sup> Please note that these are high level strategic planning proposals and do not represent a commitment. The plans and overall programme need to be assessed against other risks and against the wider South West Water programme for risk and affordability.

# **APPENDICES**

#### **APPENDIX A: SEWER OVERFLOW DETAILS**

South West Water has a programme to monitor the use and performance of storm overflows and the number of monitors is planned to increase. The table below provides a summary of any available performance data for storm overflows in the catchment.

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
| CD202410  | Spratford Stream                               | Y                  | 112                | Y                  | 207                | Y                  | 126               |
| CD720710  | Permian Aquifers in Central<br>Devon           | Y                  | 235                | Y                  | 164                | Y                  | 261               |
| CD401620  | Lower Barle                                    | Y                  | 189                | Y                  | 151                | Y                  | 174               |
| CD719240  | Permian Aquifers in Central<br>Devon           | Y                  | 78                 | Y                  | 149                | Y                  | 186               |
| CD706180  | Permian Aquifers in Central<br>Devon           | Y                  | 112                | Y                  | 146                | Y                  | 110               |
| CD201620  | Lower Barle                                    | Y                  | 165                | Y                  | 144                | Y                  | 92                |
| CD204210  | Permian Aquifers in Central<br>Devon           | Y                  | 57                 | Y                  | 134                | Y                  | 100               |
| CD715280  | Exe (Barle to Culm)                            | Y                  | 125                | Y                  | 130                | Y                  | 123               |
| CD200500  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 96                 | Y                  | 124                | Y                  | 103               |
| CD204330  | Spratford Stream                               | Y                  | 142                | Y                  | 123                | Y                  | 81                |
| CD708940  | Lowman                                         | Y                  | 97                 | Y                  | 107                | Y                  | 99                |
| CD205710  | Polly Brook                                    | Y                  | 143                | Y                  | 106                | Y                  | 92                |

 Table 28:
 Storm Overflow Performance Metrics

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
| CD402410  | Spratford Stream                               | Y                  | 79                 | Y                  | 105                | Y                  | 93                |
| CD400710  | Lower Barle                                    | Y                  | 112                | Y                  | 105                | Y                  | 63                |
| CD400180  | Lower Batherm                                  | Ν                  | n/a                | Y                  | 105                | Y                  | 0                 |
| CD205860  | Permian Aquifers in Central<br>Devon           | Y                  | 95                 | Y                  | 83                 | Y                  | 120               |
| CD403980  | Upper Clyst                                    | Y                  | 37                 | Y                  | 78                 | Y                  | 66                |
| CD205630  | Spratford Stream                               | Y                  | 75                 | Y                  | 75                 | Y                  | 70                |
| CD510730  | Permian Aquifers in Central<br>Devon           | Y                  | 73                 | Y                  | 74                 | Y                  | 0                 |
| CD200180  | Lower Batherm                                  | Y                  | 120                | Y                  | 73                 | Y                  | 0                 |
| CD405630  | Spratford Stream                               | Y                  | 61                 | Y                  | 70                 | Y                  | 71                |
| CD511170  | Exeter-Whiddon Down Culm                       | Y                  | 89                 | Y                  | 70                 | Y                  | 71                |
| CD714730  | Permian Aquifers in Central<br>Devon           | Y                  | 52                 | Y                  | 69                 | Y                  | 65                |
| CD507160  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 69                 | Y                  | 66                 | Y                  | 12                |
| CD201340  | Permian Aquifers in Central<br>Devon           | Y                  | 62                 | Y                  | 65                 | Y                  | 47                |
| CD507130  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 49                 | Y                  | 62                 | Y                  | 74                |
| CD507090  | Otter Valley                                   | Y                  | 38                 | Y                  | 60                 | Y                  | 48                |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CD201830  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 68                 | Y                  | 59                 | Y                  | 49                 |
| CD714570  | Permian Aquifers in Central<br>Devon           | Y                  | 46                 | Y                  | 57                 | Y                  | 41                 |
| CD716640  | Permian Aquifers in Central<br>Devon           | Y                  | 53                 | Y                  | 57                 | Y                  | 66                 |
| CD415250  | Permian Aquifers in Central<br>Devon           | Y                  | 32                 | Y                  | 57                 | Y                  | 26                 |
| CD707790  | Permian Aquifers in Central<br>Devon           | Y                  | 48                 | Y                  | 56                 | Y                  | 44                 |
| CD706190  | Permian Aquifers in Central<br>Devon           | Y                  | 38                 | Y                  | 56                 | Y                  | 30                 |
| CD401640  | Blackdown Hills - Greensand                    | Y                  | 0                  | Y                  | 55                 | Y                  | 24                 |
| CD716370  | Permian Aquifers in Central<br>Devon           | Y                  | 23                 | Y                  | 54                 | Y                  | 63                 |
| CD515380  | Polly Brook                                    | Y                  | 47                 | Y                  | 53                 | Y                  | 56                 |
| CD721081  | Alphin Brook                                   | Y                  | 61                 | Y                  | 53                 | Y                  | 65                 |
| CD205350  | Central Devon and Exe -<br>Aylesbeare Mudstone | Ν                  | n/a                | Y                  | 50                 | Υ                  | 43                 |
| CD200790  | Spratford Stream                               | Y                  | 74                 | Y                  | 49                 | Y                  | 17                 |
| CD716430  | Permian Aquifers in Central<br>Devon           | Y                  | 39                 | Y                  | 47                 | γ                  | 2                  |
| CD701850  | Permian Aquifers in Central                    | Y                  | 53                 | Y                  | 47                 | Y                  | 36                 |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|           | Devon                                          |                    |                    |                    |                    |                    |                    |
| CD719380  | Permian Aquifers in Central<br>Devon           | Y                  | 20                 | Y                  | 45                 | Y                  | 11                 |
| CD201640  | Blackdown Hills - Greensand                    | Y                  | 0                  | Y                  | 45                 | Y                  | 62                 |
| CD511130  | Exeter-Whiddon Down Culm                       | Y                  | 30                 | Y                  | 45                 | Y                  | 35                 |
| CD509060  | Exe (Barle to Culm)                            | Y                  | 40                 | Y                  | 41                 | Y                  | 44                 |
| CD707170  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 41                 | Y                  | 38                 | Y                  | 50                 |
| CD716320  | Permian Aquifers in Central<br>Devon           | Y                  | 31                 | Y                  | 36                 | Y                  | 16                 |
| CD516230  | Permian Aquifers in Central<br>Devon           | Y                  | 19                 | Y                  | 33                 | Y                  | 26                 |
| CD511090  | North Brook (East Devon)                       | Y                  | 18                 | Y                  | 33                 | Y                  | 32                 |
| CD510660  | Alphin Brook                                   | Y                  | 50                 | Y                  | 32                 | Y                  | 44                 |
| CD716240  | Permian Aquifers in Central<br>Devon           | Y                  | 33                 | Y                  | 32                 | Y                  | 32                 |
| CD519740  | Lower Barle                                    | Y                  | 62                 | Y                  | 30                 | Y                  | 14                 |
| CD511030  | Permian Aquifers in Central<br>Devon           | Y                  | 29                 | Y                  | 28                 | Y                  | 34                 |
| CD204500  | Permian Aquifers in Central<br>Devon           | Ν                  | n/a                | Y                  | 28                 | Y                  | 42                 |
| CD510740  | Permian Aquifers in Central<br>Devon           | Y                  | 21                 | Y                  | 27                 | Y                  | 28                 |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CD511110  | Exeter-Whiddon Down Culm                       | Y                  | 22                 | Y                  | 27                 | Y                  | 48                 |
| CD516660  | Alphin Brook                                   | Y                  | 7                  | Y                  | 25                 | Y                  | 8                  |
| CD516280  | Permian Aquifers in Central<br>Devon           | Y                  | 15                 | Y                  | 25                 | Y                  | 21                 |
| CD201380  | Permian Aquifers in Central<br>Devon           | Y                  | 26                 | Y                  | 25                 | Y                  | 32                 |
| CD720380  | n/a                                            | Y                  | 15                 | Y                  | 24                 | Y                  | 13                 |
| CD510640  | Alphin Brook                                   | Y                  | 23                 | Y                  | 23                 | Y                  | 34                 |
| CD401340  | Permian Aquifers in Central<br>Devon           | Y                  | 17                 | Y                  | 23                 | Y                  | 25                 |
| CD716980  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 46                 | Y                  | 23                 | Y                  | 22                 |
| CD519020  | Permian Aquifers in Central<br>Devon           | Y                  | 15                 | Y                  | 22                 | Y                  | 0                  |
| CD517500  | Permian Aquifers in Central<br>Devon           | Y                  | 9                  | Y                  | 20                 | Y                  | 14                 |
| CD510670  | Alphin Brook                                   | Y                  | 19                 | Y                  | 20                 | Y                  | 9                  |
| CD401380  | Permian Aquifers in Central<br>Devon           | Y                  | 39                 | Y                  | 20                 | Y                  | 34                 |
| CD510840  | North Brook (East Devon)                       | Y                  | 13                 | Y                  | 20                 | Y                  | 23                 |
| CD716340  | Permian Aquifers in Central<br>Devon           | Y                  | 15                 | Y                  | 20                 | Y                  | 21                 |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CD513540  | Permian Aquifers in Central<br>Devon           | Y                  | 16                 | Y                  | 17                 | Y                  | 16                 |
| CD514620  | Permian Aquifers in Central<br>Devon           | Y                  | 6                  | Y                  | 17                 | Y                  | 21                 |
| CD507220  | Otter Valley                                   | Y                  | 16                 | Y                  | 17                 | Y                  | 14                 |
| CD507140  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 18                 | Y                  | 16                 | Y                  | 22                 |
| CD712990  | Permian Aquifers in Central<br>Devon           | Y                  | 25                 | Y                  | 16                 | Y                  | 14                 |
| CD519050  | Permian Aquifers in Central<br>Devon           | Y                  | 31                 | Y                  | 15                 | Y                  | 2                  |
| CD513520  | Permian Aquifers in Central<br>Devon           | Y                  | 33                 | Y                  | 15                 | Y                  | 22                 |
| CD205150  | Exe (Barle to Culm)                            | Y                  | 0                  | Y                  | 15                 | Y                  | 0                  |
| CD507150  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 11                 | Y                  | 14                 | Y                  | 15                 |
| CD510770  | Permian Aquifers in Central<br>Devon           | Y                  | 7                  | Y                  | 14                 | Y                  | 19                 |
| CD511020  | Exeter-Whiddon Down Culm                       | Y                  | 4                  | Y                  | 14                 | Y                  | 14                 |
| CD520510  | North Brook (East Devon)                       | Y                  | 6                  | Y                  | 12                 | Y                  | 18                 |
| CD514980  | Spratford Stream                               | Y                  | 15                 | Y                  | 11                 | Y                  | 8                  |
| CD707180  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 12                 | Y                  | 11                 | Y                  | 18                 |

| CD_Number | Waterbody                            | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|--------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CD516050  | Permian Aquifers in Central<br>Devon | Y                  | 11                 | Y                  | 11                 | Y                  | 10                 |
| CD713570  | Permian Aquifers in Central<br>Devon | Y                  | 5                  | Y                  | 11                 | Y                  | 8                  |
| CD510940  | Exeter-Whiddon Down Culm             | Y                  | 6                  | Y                  | 10                 | Y                  | 14                 |
| CD515200  | Exe (Barle to Culm)                  | Y                  | 2                  | Y                  | 10                 | Y                  | 19                 |
| CD510830  | Alphin Brook                         | Y                  | 11                 | Y                  | 10                 | Y                  | 14                 |
| CD509080  | Permian Aquifers in Central<br>Devon | Y                  | 8                  | Y                  | 10                 | Y                  | 11                 |
| CD510880  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 9                  | Y                  | 0                  |
| CD814950  | Permian Aquifers in Central<br>Devon | Y                  | 6                  | Y                  | 9                  | Y                  | 3                  |
| CD510790  | Permian Aquifers in Central<br>Devon | Y                  | 16                 | Y                  | 8                  | Y                  | 5                  |
| CD709920  | Permian Aquifers in Central<br>Devon | Y                  | 4                  | Y                  | 8                  | Y                  | 12                 |
| CD516180  | Permian Aquifers in Central<br>Devon | Y                  | 5                  | Y                  | 8                  | Y                  | 1                  |
| CD510850  | North Brook (East Devon)             | Y                  | 5                  | Y                  | 8                  | Y                  | 5                  |
| CD813240  | Lower Cranny Brook                   | Y                  | 1                  | Y                  | 8                  | Y                  | 1                  |
| CD511010  | Exeter-Whiddon Down Culm             | Y                  | 15                 | Y                  | 8                  | Y                  | 3                  |
| CD516350  | Permian Aquifers in Central          | Y                  | 6                  | Y                  | 8                  | Y                  | 9                  |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|           | Devon                                          |                    |                    |                    |                    |                    |                    |
| CD515310  | Permian Aquifers in Central<br>Devon           | Y                  | 1                  | Y                  | 7                  | Y                  | 10                 |
| CD507120  | Otter Valley                                   | Y                  | 4                  | Y                  | 7                  | Y                  | 6                  |
| CD506070  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 6                  | Y                  | 7                  | Y                  | 7                  |
| CD516270  | Permian Aquifers in Central<br>Devon           | Y                  | 6                  | Y                  | 7                  | Y                  | 21                 |
| CD511040  | Permian Aquifers in Central<br>Devon           | Y                  | 1                  | Y                  | 7                  | Y                  | 2                  |
| CD715130  | Exe (Barle to Culm)                            | Y                  | 2                  | Y                  | 7                  | Y                  | 11                 |
| CD515370  | Upper Cranny Brook                             | Y                  | 3                  | Y                  | 6                  | Y                  | 8                  |
| CD518030  | Otter Valley                                   | Y                  | 18                 | Y                  | 6                  | Y                  | 16                 |
| CD507190  | Otter Valley                                   | Y                  | 5                  | Y                  | 6                  | Y                  | 11                 |
| CD710650  | North Brook (East Devon)                       | Y                  | 16                 | Y                  | 6                  | Y                  | 10                 |
| CD505950  | Permian Aquifers in Central<br>Devon           | Y                  | 2                  | Y                  | 5                  | Y                  | 4                  |
| CD710960  | Exeter-Whiddon Down Culm                       | Y                  | 1                  | Y                  | 5                  | Y                  | 11                 |
| CD515290  | Permian Aquifers in Central<br>Devon           | Y                  | 5                  | Y                  | 4                  | Y                  | 9                  |
| CD510700  | Permian Aquifers in Central<br>Devon           | Y                  | 12                 | Y                  | 4                  | Y                  | 0                  |

| CD_Number | Waterbody                            | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|--------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CD520690  | Exeter-Whiddon Down Culm             | Y                  | 0                  | Y                  | 3                  | Y                  | 7                  |
| CD511140  | Exeter-Whiddon Down Culm             | Y                  | 6                  | Y                  | 3                  | Y                  | 9                  |
| CD519010  | Permian Aquifers in Central<br>Devon | Y                  | 8                  | Y                  | 3                  | Y                  | 13                 |
| CD511080  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 3                  | Y                  | 18                 |
| CD717990  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 3                  | Y                  | 0                  |
| CD507080  | Otter Valley                         | Y                  | 3                  | Y                  | 3                  | Y                  | 9                  |
| CD510860  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 2                  | Y                  | 0                  |
| CD513510  | Permian Aquifers in Central<br>Devon | Y                  | 8                  | Y                  | 2                  | Y                  | 5                  |
| CD519100  | Exeter-Whiddon Down Culm             | Y                  | 0                  | Y                  | 2                  | Y                  | 1                  |
| CD710990  | Permian Aquifers in Central<br>Devon | Y                  | 16                 | Y                  | 2                  | Y                  | 0                  |
| CD516020  | Permian Aquifers in Central<br>Devon | Y                  | 1                  | Y                  | 2                  | Y                  | 2                  |
| CD510750  | Permian Aquifers in Central<br>Devon | Y                  | 5                  | Y                  | 2                  | Y                  | 15                 |
| CD519040  | Permian Aquifers in Central<br>Devon | Y                  | 2                  | Y                  | 2                  | Y                  | 2                  |
| CD711000  | Permian Aquifers in Central<br>Devon | Y                  | 1                  | Y                  | 2                  | Y                  | 1                  |
| CD510720  | Permian Aquifers in Central          | Y                  | 1                  | Y                  | 2                  | Y                  | 0                  |

| CD_Number | Waterbody                            | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr<br>Spills |
|-----------|--------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
|           | Devon                                |                    |                    |                    |                    |                    |                   |
| CD510930  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 1                  | Y                  | 0                 |
| CD510810  | Permian Aquifers in Central<br>Devon | Y                  | 0                  | Y                  | 1                  | Y                  | 1                 |
| CD813290  | Permian Aquifers in Central<br>Devon | Y                  | 0                  | Y                  | 1                  | Y                  | 9                 |
| CD516220  | Permian Aquifers in Central<br>Devon | Y                  | 1                  | Y                  | 1                  | Y                  | 1                 |
| CD510760  | Permian Aquifers in Central<br>Devon | Y                  | 4                  | Y                  | 1                  | Y                  | 5                 |
| CD510900  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 1                  | Y                  | 9                 |
| CD513490  | Permian Aquifers in Central<br>Devon | Y                  | 0                  | Y                  | 1                  | Y                  | 0                 |
| CD511060  | Permian Aquifers in Central<br>Devon | Y                  | 0                  | Y                  | 1                  | Y                  | 4                 |
| CD816300  | Permian Aquifers in Central<br>Devon | Y                  | 1                  | Y                  | 1                  | Y                  | 0                 |
| CD510820  | Exeter-Whiddon Down Culm             | Y                  | 2                  | Y                  | 1                  | Y                  | 0                 |
| CD519260  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 0                  | Y                  | 4                 |
| CD510780  | Permian Aquifers in Central<br>Devon | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD510890  | North Brook (East Devon)             | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD510680  | Exeter-Whiddon Down Culm             | Y                  | 6                  | Y                  | 0                  | Y                  | 14                |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| CD522050  | Permian Aquifers in Central<br>Devon           | Y                  | 0                  | Y                  | 0                  | Y                  | 1                  |
| CD701840  | Exeter-Whiddon Down Culm                       | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD720140  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD514970  | Spratford Stream                               | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD515170  | Exe (Barle to Culm)                            | Y                  | 0                  | Y                  | 0                  | Y                  | 3                  |
| CD511150  | Exeter-Whiddon Down Culm                       | Y                  | 0                  | Y                  | 0                  | Y                  | 1                  |
| CD510800  | Permian Aquifers in Central<br>Devon           | Y                  | 2                  | Y                  | 0                  | Y                  | 1                  |
| CD720450  | Permian Aquifers in Central<br>Devon           | Y                  | 1                  | Y                  | 0                  | Y                  | 0                  |
| CD510710  | Permian Aquifers in Central<br>Devon           | Y                  | 0                  | Y                  | 0                  | Y                  | 18                 |
| CD522100  | Permian Aquifers in Central<br>Devon           | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD511160  | Exeter-Whiddon Down Culm                       | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD718010  | Exe (Barle to Culm)                            | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD507200  | Otter Valley                                   | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD718180  | Permian Aquifers in Central<br>Devon           | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |
| CD515230  | Permian Aquifers in Central                    | Y                  | 0                  | Y                  | 0                  | Y                  | 0                  |

| CD_Number | Waterbody                                      | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr<br>Spills |
|-----------|------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|
|           | Devon                                          |                    |                    |                    |                    |                    |                   |
| CD807100  | Otter Valley                                   | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD507210  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD707110  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD516420  | Permian Aquifers in Central<br>Devon           | Y                  | 4                  | Y                  | 0                  | Y                  | 12                |
| CD710970  | Permian Aquifers in Central<br>Devon           | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD510870  | North Brook (East Devon)                       | Y                  | 15                 | Y                  | 0                  | Y                  | 10                |
| CD809550  | Central Devon and Exe -<br>Aylesbeare Mudstone | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD716360  | Permian Aquifers in Central<br>Devon           | Y                  | 11                 | Y                  | 0                  | Y                  | 2                 |
| CD511120  | Exeter-Whiddon Down Culm                       | Y                  | 0                  | Y                  | 0                  | Y                  | 0                 |
| CD710950  | Alphin Brook                                   | Y                  | 0                  | Y                  | 0                  | Y                  | 3                 |
| CD205120  | Exe (Barle to Culm)                            | Y                  | 0                  | Y                  | 0                  | Y                  | 4                 |
| n/a       | n/a                                            | n/a                | n/a                | n/a                | n/a                | Y                  | 20                |
| n/a       | n/a                                            | n/a                | n/a                | n/a                | n/a                | Y                  | 0                 |
| n/a       | n/a                                            | n/a                | n/a                | n/a                | n/a                | Y                  | 0                 |
| n/a       | n/a                                            | n/a                | n/a                | n/a                | n/a                | Y                  | 72                |

| CD_Number | Waterbody | 2019<br>Reportable | 2019<br>Nr. Spills | 2020<br>Reportable | 2020<br>Nr. Spills | 2021<br>Reportable | 2021 Nr.<br>Spills |
|-----------|-----------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 12                 |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 3                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 0                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 0                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 0                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 1                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 0                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 79                 |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 53                 |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 8                  |
| n/a       | n/a       | n/a                | n/a                | n/a                | n/a                | Y                  | 0                  |

#### APPENDIX B: STORM OVERFLOW ASSESSMENT FRAMEWORK (SOAF) DETAILS

Storm overflows which do not affect Bathing Waters or Shellfish Waters, but may impact on amenity watercourses, are managed in accordance with the Storm Overflow Assessment Framework (SOAF) industry guidance. The following table shows the SOAF information for each storm overflow in the catchment.

| Site Name                             | CD Number |
|---------------------------------------|-----------|
| BAMPTON STW_SSO_BAMPTON               | CD400180  |
| BAMPTON STW_SSO_BAMPTON               | CD200180  |
| BRADNINCH STW_SSO_BRADNINCH           | CD200500  |
| BRUSHFORD STW_SO_BRUSHFORD            | CD400710  |
| BURLESCOMBE STW_SSO_BURLESCOMBE       | CD200790  |
| CORNER LANE SPS_PSCSOEO_HALBERTON     | CD714730  |
| COUNTESS WEAR STW_SSO_EXETER          | CD201340  |
| DUKE STREET SPST_PSCSOEO_CULLOMPTON   | CD714570  |
| DULVERTON STW_SO_DULVERTON            | CD401620  |
| DULVERTON STW_SSO_DULVERTON           | CD201620  |
| DUNKESWELL STW_SO_DUNKESWELL          | CD401640  |
| DUNKESWELL STW_SSO_DUNKESWELL         | CD201640  |
| EXETER RD_CSO_EXMOUTH                 | CD507160  |
| EXMINSTER SPST_PSCSOEO_EXMINSTER      | CD716430  |
| EXTON NORTH SPS_PSCSOEO_EXMOUTH       | CD706180  |
| EXTON SOUTH SPS_PSCSOEO_EXMOUTH       | CD701850  |
| HOLCOMBE ROGUS STW_SO_HOLCOMBE ROGUS  | CD402410  |
| HOLCOMBE ROGUS STW_SSO_HOLCOMBE ROGUS | CD202410  |
| HOLLOWAY ST_CSO_EXETER                | CD510730  |
|                                       |           |

 Table 29:
 SOAF triggered investigation sites

| Site Name                            | CD Number |
|--------------------------------------|-----------|
| KENN/KENNFORD SPS_PSCSOEO_KENNFORD   | CD719240  |
| LIME KILN PS_CSO_BUDLEIGH SALTERTON  | CD507090  |
| LITTLE SILVER SPST_PSCSOEO_TIVERTON  | CD708940  |
| LWR NORTH ST I_CSO_EXETER            | CD511170  |
| MAER LANE STW_SSO_EXMOUTH            | CD201830  |
| MAER RD SPS_CSO_EXMOUTH              | CD507130  |
| NADDERWATER SPS_PSCSOEO_WHITESTONE   | CD721081  |
| ODAMS WHARF SPS_PSCSOEO_EBFORD       | CD720710  |
| PENNSYLVANIA ROAD_CSO_EXETER         | CD511130  |
| WITHYBRIDGE SPS_PSEO_BROADCLYST      | CD814950  |
| PLYMTREE STW_SO_PLYMTREE             | CD403980  |
| HEATHCROSS SPS_PSEO_BROADCLYST       | CD813240  |
| REWE STW_SSO_REWE                    | CD204210  |
| SAMPFORD PEVERELL STW_SSO_SAMPFORD P | CD204330  |
| SANDY LANE LF SPST_PSCSOEO_DAWLISH   | CD707790  |
| SMUGGLERS LANE SPS_PSCSOEO_DAWLISH   | CD716640  |
| TEIGNMOUTH ROAD_PSCSOEO_HOLCOMBE     | CD706190  |
| UFFCULME STW_SSO_UFFCULME            | CD205350  |
| UPLOWMAN STW_SO_TIVERTON             | CD415250  |
| WEAVER CRESCENT_CSO_TIVERTON         | CD509060  |
| WESTEXE SPST_PSCSOEO_TIVERTON        | CD715280  |
| WILLAND STW_SO_WILLAND               | CD405630  |
| WILLAND STW_SSO_WILLAND              | CD205630  |
| YEOFORD STW_SSO_CREDITON             | CD205860  |
|                                      |           |

#### **APPENDIX C: RESPONSIVE INVESTMENT OPTIMISATION**

Reactive investment needs are identified via investigations following reactive response to operational/customer issues and planned surveys that are targeted to detect and resolve problems before they have an impact on customers and the environment.

The investment needs are prioritised based on the risk to properties and the identification of repeat events. These needs then form a programme of works for delivery over the next 12 months. Details for any needs recorded for the Exe catchment are also shown in Table below.

| IM Number | Driver                 | Route                                             | Stage                        | Status      | Stage No |
|-----------|------------------------|---------------------------------------------------|------------------------------|-------------|----------|
| N84170    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Investment<br>Initialisation | In Progress | Stage 1  |
| N43370    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Investment<br>Initialisation | In Progress | Stage 1  |
| N80317    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Pollution) | AM Review                    | In Progress | Stage 2  |
| N82424    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Pollution) | Contractor<br>Scoping        | In Progress | Stage 3  |
| N93766    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Contractor<br>Scoping        | In Progress | Stage 3  |
| N84416    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Pollution) | Contractor<br>Scoping        | In Progress | Stage 3  |
| N80616    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Contractor<br>Scoping        | In Progress | Stage 3  |
| N85966    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Contractor<br>Scoping        | In Progress | Stage 3  |
| N85967    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Contractor<br>Scoping        | In Progress | Stage 3  |
| N85617    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)  | Quotation Review             | In Progress | Stage 4  |

#### **Table 30**: Reactive investment opportunities

| IM Number | Driver                 | Route                                                         | Stage         | Status      | Stage No |
|-----------|------------------------|---------------------------------------------------------------|---------------|-------------|----------|
| N92567    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N91319    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N79321    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Pollution)             | Review Scope  | In Progress | Stage 6  |
| N91174    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N91216    |                        | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N86166    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N85919    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N92066    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N91867    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Review Scope  | In Progress | Stage 6  |
| N82620    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74519    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N72069    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N82669    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N72768    | Capital                | Rapid Investment<br>- WWS-Networks                            | Confirm Scope | In Progress | Stage 7  |

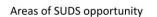
| IM Number | Driver                 | Route                                                         | Stage         | Status      | Stage No |
|-----------|------------------------|---------------------------------------------------------------|---------------|-------------|----------|
|           | Maintenance            | (Flooding)                                                    | _             |             |          |
| N80320    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N79719    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N75273    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N82569    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74268    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N77066    |                        | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N82670    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N79319    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N44416    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N83666    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N83666    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N80119    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N73571    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N82716    | Capital                | Rapid Investment                                              | Confirm Scope | In Progress | Stage 7  |

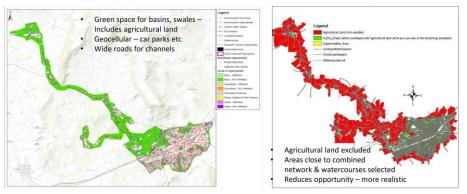
| IM Number | Driver                 | Route                                                         | Stage         | Status      | Stage No |
|-----------|------------------------|---------------------------------------------------------------|---------------|-------------|----------|
|           | Maintenance            | - WWS-Networks<br>(Pollution)                                 |               |             |          |
| N44857    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74116    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N80766    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N71619    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N79766    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N69971    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N82568    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N85868    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N75367    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N79316    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N69019    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74419    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N69920    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks                            | Confirm Scope | In Progress | Stage 7  |

| M Number | Driver                 | Route                                                         | Stage         | Status      | Stage No |
|----------|------------------------|---------------------------------------------------------------|---------------|-------------|----------|
|          |                        | (Transferred<br>Sewers)                                       |               |             |          |
| N83917   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N82470   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N85618   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74269   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N73918   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N85968   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74068   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N91217   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N85616   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N80321   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N83017   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74918   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N76920   | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |

| IM Number | Driver                 | Route                                                         | Stage         | Status      | Stage No |
|-----------|------------------------|---------------------------------------------------------------|---------------|-------------|----------|
| N82626    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N71767    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Confirm Scope | In Progress | Stage 7  |
| N74166    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Confirm Scope | In Progress | Stage 7  |
| N44976    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Programmed    | In Progress | Stage 8  |
| N85567    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Pollution)             | Programmed    | In Progress | Stage 8  |
| N77616    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Programmed    | In Progress | Stage 8  |
| N75666    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed     | Completed   | Stage 9  |
| N79117    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed     | Completed   | Stage 9  |
| N75516    |                        | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed     | Completed   | Stage 9  |
| N86216    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed     | Completed   | Stage 9  |
| N77218    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed     | Completed   | Stage 9  |
| N79921    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Pollution)             | Completed     | Completed   | Stage 9  |
| N71817    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed     | Completed   | Stage 9  |
| N83919    | Capital                | Rapid Investment<br>- WWS-Networks                            | Completed     | Completed   | Stage 9  |

| IM Number | Driver                 | Route                                                         | Stage     | Status    | Stage No |
|-----------|------------------------|---------------------------------------------------------------|-----------|-----------|----------|
|           | Maintenance            | (Flooding)                                                    |           |           |          |
| N73868    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Transferred<br>Sewers) | Completed | Completed | Stage 9  |
| N78866    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |
| N83918    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |
| N75169    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |
| N82480    | Health & Safety        | Rapid Investment<br>- WWS-Networks<br>(Pollution)             | Completed | Completed | Stage 9  |
| N83417    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |
| N68716    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |
| N78016    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |
| N43255    | Capital<br>Maintenance | Rapid Investment<br>- WWS-Networks<br>(Flooding)              | Completed | Completed | Stage 9  |


#### APPENDIX D: SURFACE WATER SEPARATION AND SuDS APPROACH


To explore opportunities for SWS and SuDS, Stantec's GIS based Surface Water Assessment Tool (SWAT) was applied to the 26 Complex TPUs that were hydraulically modelled for future flood risk (FFR). The tool plots impermeable areas, green space, existing networks, buildings, roads and watercourses. It plots existing foul combined and surface water networks and identifies where surface water sewers join combined sewers as potential points for disconnection. It identifies potential land and road space as well as residential and commercial properties for different interventions.

Using this insight our approach for surface water separation and SuDS is to find an alternative pathway for surface water, where we identify surface water contributing to risks in our networks. Surface water can originate from buildings, roads/highways and paved areas. Surface water collection may also exist but be connected to the foul network at some point. In this case we would consider options to provide an alternative pathway for the surface water such a swale or other watercourse or SuDS solution where space and natural topography support this approach. This would include conveying the surface water to an appropriate location. Further modelling and investigations are required to ensure this will not generate a surface water flooding risk elsewhere.



Open space SUDS opportunity





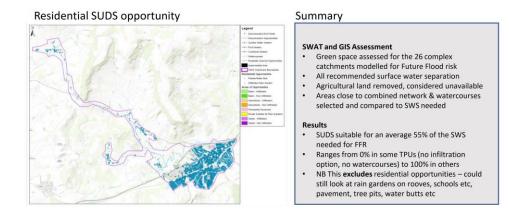



Figure 17: Approach to assessing opportunity for SuDS solutions for Surface Water Separation

## APPENDIX E: CURRENT AND PLANNED UPSTREAM THINKING (UST) PROJECTS

South West Water's infiltration and site surveys may identify opportunities for Natural Flood Management and Upstream Thinking interventions in the Exe catchment. South West Water intend to collaborate with the EA and take a similar GIS based approach to assessing Natural Flood Management options where tackling shared surface water flooding issues. The figure below shows the coverage of current upstream thinking (UST) projects in the vicinity of the Exe catchment where upper catchment solutions are being explored; the intention is to expand this approach.

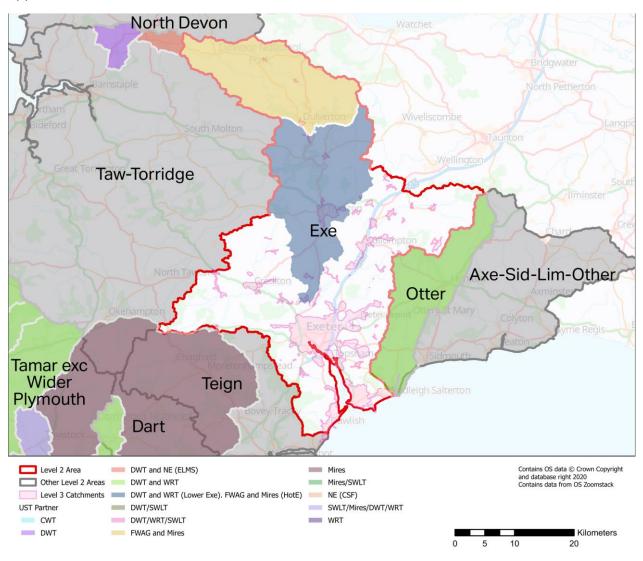



Figure 18: Catchments with Upstream Thinking Programmes